1)  decision problem of propositional logic

2)  proposition logic

1.
The definition of truth degree in the classic two-valued proposition logic formula is populared to the uneven probability space whose power is 2,and two-valued logic(p,q) measure and its proposition probability truth degree are defined.

2.
Aiming at the problem that there exists very complicated and a large amount of component constraints,an algorithm of component constraint detection based on proposition logic was proposed,in which the proposition in daily diction was transformed into the formal proposition of mathematical logic via the process of proposition symbolization,i.

3.
In the viewpoint of proposition logic and based on extension theory,a new method for proposition representation is proposed.

3)  logical connection proposition

1.
The highest level logic,or rather,the second level logic deals with logical connection proposition which is the highest grade proposition.

2.
In other words, the logical connection proposition is composed of empirical mathematical connection propositions and the connective.

4)  propositional logic

1.
The Generalized Tautology in Disturbing Fuzzy Propositional Logic System;

2.
Tense operators E(ever)and F(will)as well as their dual operators H(ever always be) and G(will always be) were introduced into lattice-valued propositional logic system LP(X), forming a lattice-valued tense propositional logic system LTP(X).

5)  logical proposition

6)  deterministic propositional dynamic logic

 判定问题decision problem   判断是否有一种能够解决某一类问题的能行算法的研究课题。这里所说的一类问题，是指有无穷多个同一类型问题组成的问题。问题的解是指判断这一类问题中的每一个是否具有某种性质，或判断它们中的每一个是真还是假。如果能找到一种有效的能行的算法，依据这种算法，一类问题中的每一个都可以有确定解，就称这一类问题是可判定的；否则就称这一类问题是不可判定的。一般说来，证明一类问题是可判定的比较容易，只要找出解这类问题的一种算法，但要证明一类问题是不可判定的就不容易。要证明任何一种算法都不能判定某一类问题，首先必须给算法下一个严格的精确的定义。这就要用到递归函数和递归论的方法，用递归论的方法可以把一类问题能行地化为自然数集的某个子集。判定这一类问题就变为判定这个子集是否为递归集。如果这一子集不是递归集，则这一类问题就是不可判定的。利用递归论方法，许多问题被证明是不可判定的。例如群的子问题，丢番图方程解的问题，一阶逻辑公式的可满足性问题都被证明是不可判定的。已知一些可判定的和不可判定的问题后，归约的方法就是判定问题的一种重要而有效的方法了。把未知的一类问题的解化归到一类已知的问题的解就是归约方法。如果T，T’是两类问题，T’中的每个问题的解都能化归到T中某个问题的解，就记作T’≤T。这时如果T是可判定的，T’也是可判定的；如果T’是不可判定的，T也是不可判定的。