1) continuous heater
连续(式)加热器
2) continuous reheating furnace
连续式加热炉
1.
The reformation of side discharge roll table of continuous reheating furnace is introduced.
介绍了端出料连续式加热炉炉头辊道的改造。
2.
The reheating process of billet in continuous reheating furnace is studied by using numerical simulation method.
用数值模拟的方法研究了连续式加热炉内钢坯的加热过程,分析了滑轨结构、滑轨高度和滑轨材质等对钢坯黑印温差的影响,为消除钢坯黑印、提高钢坯加热质量提供了理论依据。
4) continuous heating
连续加热
1.
By comparing the starting line of continuous heating transformation with that of TTT diagram, the similarity and difference of the microstructure instability during continuous heating and isothermal heating co.
通过比较连续加热与等温加热条件下的相转变开始线,探讨了连续加热与等温加热条件下结构失稳机制的异同。
2.
The law and characteristics of 7Cr7Mo3V2Si steel under the condition of continuous heating have been studied systematically by using an advanced fully automatic transformation determining instrument called Formaster.
利用Formastor全自动相变测定仪研究了7Cr7Mo3V2Si钢在连续加热条件下的相变规律及特点;测定了能反映其相变规律与特点的奥氏体形成图。
5) continuous tubular heat decomposer
连续管式热解器
1.
This paper shows in detail the techno1ogical theory of heat-ecomposition and the comparison of equipment of production of which light magnesium carbonate can be produced by the way of dolomite caronation, the structure of continuous tubular heat decomposer,technological design, production characteristic and the effect ofsaving energy.
介绍了白云岩碳化法制造轻质碳酸镁工业装置中的热解工艺原理、生产设备比较和连续管式热解器的结构、工艺设计、生产特点及节能效果。
6) regenerative continuous heating furnace
蓄热式连续加热炉
1.
Study on mathematical model of regenerative continuous heating furnace;
蓄热式连续加热炉数学模型的研究
2.
A mathematical model of regenerative continuous heating furnace is established based on gray enclosure radiation theory.
在封闭灰腔辐射理论的基础上,建立蓄热式连续加热炉数学模型。
补充资料:连续式操作循环式结晶器
分子式:
分子量:
CAS号:
性质:又称奥斯陆结晶器(Oslocrystallizer)。饱和溶液由加料管连续进入,经循环管通过冷却器而变为过饱和。过饱和溶液沿着进入结晶器的底部,并向上流动,与悬浮的晶体接触,进行结晶而解除过饱和。晶体与溶液一同循环,颗粒不断长大,直至其沉降速度大于循环溶液的上升速度时而降落器底,由排出口连续排出。所希望的晶体大小,可通过改变溶液的循环速度和在冷却器中热量的去除速度加以调节。广泛应用于生产需要控制颗粒大小的晶体以及量大的晶体。
分子量:
CAS号:
性质:又称奥斯陆结晶器(Oslocrystallizer)。饱和溶液由加料管连续进入,经循环管通过冷却器而变为过饱和。过饱和溶液沿着进入结晶器的底部,并向上流动,与悬浮的晶体接触,进行结晶而解除过饱和。晶体与溶液一同循环,颗粒不断长大,直至其沉降速度大于循环溶液的上升速度时而降落器底,由排出口连续排出。所希望的晶体大小,可通过改变溶液的循环速度和在冷却器中热量的去除速度加以调节。广泛应用于生产需要控制颗粒大小的晶体以及量大的晶体。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条