1)  law of gravitation,law of universal gravitation

2)  Law of Universal Gravitation

1.
Formation Process of the Law of Universal Gravitation;

2.
Three Kepler laws, which describe planets motion around the sun, are derived by using the law of universal gravitation and the second Newton law in mechanics.

3.
It also further explores the functions of analogical reasoning from the perspective of methodology, and makes a deep analysis of the essential differences between Coulomb law and the law of universal gravitation and the limitations of analogical reasoning.

3)  The Law of Universal Gravitation

1.
A Study on Defining Human Resources Management with the Law of Universal Gravitation;

4)  the law of gravity

1.
the law of gravity and the law of Coulomb with the form of constant dimension fractal theoretically, for free fall movement (center to center movement), the original Newton s second law F=ma, is derived strictly and theoretically, for an example (a small ball moves down along a long incline), the original law of gravity and the original law of Coulomb are derived approximately and theoretically.

5)  improved Newton's second law

6)  general law of universal gravitation

 万有引力定律universal gravitation，law of    自然界中任何两个质点都相互吸引，这个力同两个质点的质量的乘积成正比，同它们之间的距离的二次方成反比。如用m1、m2表示两质点的质量，r表示两质点间的距离，F表示作用力的值，则F＝Gm1m2／r2，式中的G是比例常量，称万有引力常量或牛顿引力常量，数值因不同单位制而异，在国际单位制中G为6.672×1011牛顿·米2／千克2。这个定律由牛顿于1687年在《原理》上首次发表，它和牛顿运动定律一起，构成了牛顿力学特别是天体力学的基础。   在牛顿公布该定律之前，胡克、惠更斯都曾根据开普勒定律推测行星和太阳间存在和距离二次方成反比的引力，但未能提出数学证明，为此胡克还和牛顿通过信，因此对定律的首创权有过争议。牛顿还曾对晚年的忘年交斯多克雷说过，1666年他在家乡避瘟疫时，曾因见苹果从树上落地而想到地球对苹果的引力是否可延伸到月球。此说传布很广，许多科学家深信不疑，并对牛顿为何推迟20年才发表有种种推测。但也有人根据牛顿晚年的精神状态，认为他对斯多克雷所说的并非真情。   一般物体之间的引力  ，在物体尺度远小于质心距离时，可视为质点；尺度和间距相近时，须视为质点系，用积分法求引力。但牛顿已算出一个密度均匀的圆球对附近质点的引力同把圆球的质量集中于球心时完全一致。对万有引力的起因，牛顿未作解释，把它视为超距力或以太的作用，系后人所为。爱因斯坦在广义相对论中将引力归之于时空曲率的变化。