说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 球面大地测量学
1)  spheroid geodesy
球面大地测量学
2)  ellipsoidal geodesy
椭球面大地测量学
3)  ellipsoid geodesy
椭球大地测量学
4)  celestial geodesy
天球大地测量学
5)  IUGG
国际大地测量学与地球物理学联合会
1.
The historical developments and current activities of the International Union of Geodesy and Geophysics (IUGG) have been summarized in this paper.
本文概述了国际大地测量学与地球物理学联合会(IUGG)的历史发展,介绍了IUGG的近况。
2.
The General Assembly of the International Union of Geodesy and Geophysics (IUGG) is the “Olympic Meeting” of the international geophysical circle.
国际大地测量学与地球物理学联合会 (IUGG)大会是国际地球物理学界的奥林匹克大会。
6)  IUGG
国际大地测量学地球物理学联合会
补充资料:椭球面大地测量学
      几何大地测量学的一个分支。研究地球椭球面的数学性质,以及同该面有关的大地测量计算问题的学科。
  
  椭球面大地测量学研究的主要问题是:椭球面上大地线和法截线的性质;椭球面三角形的解算;大地测量主题的解算;椭球面投影到平面上的问题,以便将大地坐标换算为平面坐标;一椭球面同另一椭球面的关系,以实现不同大地坐标系的换算。
  
  椭球面上点的表示和点间的联系  参考椭球面上一点G的坐标用大地经度L和大地纬度B表示(图1)。大地经度L为 G点的子午面PGP′同起始子午面PEP′间的交角,从起始子午面分别向东和向西量度,各由0°~180°;向东为东经,向西为西经。大地纬度B为椭球面上G点的法线GN与赤道面 EQE′的交角,从赤道面分别向北极P和南极 P′量度,各由0°~90°;向北为北纬,向南为南纬。
  
  椭球面上两点间用大地线连接。大地线是椭球面上两点间距离最短的曲线(图2)。设A、B为椭球面上的两点,PP′为椭球的短轴,A和B点的法线分别为ANA和BNB;由A点法线与B点构成的法面ABNA一般不同由B点法线与A构成的法面BANB重合,它们同椭球面的截曲线分别是AɑB和AbB,称为相对法截线。为了消除椭球面上两点间连线的这种非惟一性,大地测量中规定用椭球面上A、B两点间的大地线AcB(通常位于两条相对法截线之间)为地面上相应两点的投影线。椭球面上的一切计算公式都是依据大地线推导的。例如,利用大地线的特性及其与法截线的关系,可以推出法截线化为大地线方向的改正公式,照准点高出椭球面所引起的方向改正公式,以及地面上测量的距离归算至椭球面上的改正公式。
  
  大地测量主题解算  一般把在椭球面上解算点的大地坐标和点间的边长、方位角这一类大地测量学的基本问题称为大地测量主题解算(图3)。已知点1的大地经度L1、大地纬度B1,以及点1至点2的大地线长度S和大地线方位角A12,计算点2和大地经度L2、大地纬度B2和点2至点1的大地线方位角 A21,称为大地测量主题正算问题。已知点1和点2的大地经度L1和L2,以及大地纬度B1和B2,计算两点间的大地线长度S及其两端的大地线方位角A12和A21,称为大地测量主题反算问题。大地测量主题的解算,实质上就是解算图3所示的椭球面极三角形。由于椭球面三角形不如球面三角形那样简单,解算比较复杂,通常应用级数展开公式,并根据所需要的精度来决定级数的项数。解算的复杂性导致多种多样的解算方法,归纳起来有3种类型:
  
  第一类是以勒让德级数为基础,将两点的经度差△L、纬度差△B和方位角差△A展开为大地线长度S的幂级数,其中各系数含有B、△L和A对S的各阶导数,它们都需要利用大地线的微分关系式来求定。
  
  第二类是利用一个辅助面作为解算的过渡面,例如经典的贝塞尔方法,就是采用一个球面作为辅助面,先确定椭球面上各元素同辅助球面上各元素之间的相应关系,再将椭球面上的已知元素换算到辅助球面上,在辅助球面上求解大地测量主题。最后,将辅助球面上解算的结果再换算至椭球面上。
  
  第三类是利用大地线的基本微分方程,采取数值积分的方法,直接解算大地测量主题。这类解法的公式简单,但用于中、长距离时的重复计算较大。
  
  在大地控制网的洲际联测中,在无线电导航以及洲际导弹发射技术中,中距离(1000公里以下)和长距离(1000公里以上)的大地测量主题解算有着重要作用。
  
  大地坐标系的换算  大地坐标系是由所采用的椭球参数(长半轴和扁率)以及椭球在地球体内的定位确定的。如果采用了新的椭球,即改变了椭球参数;或者改变了椭球的定位,即改变了大地原点的起算数据;大地坐标系都将发生变化。大地坐标系有了变化,就要重新计算大地控制网中各点的大地坐标。如果根据新的起算数据和新的椭球参数,重新解算大地测量主题,计算工作量将非常繁重。实际上,椭球参数改变或定位改变所引起的大地坐标系各参数的变化都是很小的。因此,可以利用数学关系建立一种公式,在坐标变换时用以直接计算大地控制网中每一点大地坐标变化和每一边方位角变化的改正数。这种公式称为大地线微分公式。由于参考椭球重新定位(椭球参数不变)所引起的大地坐标和方位角改正数公式,称为第一类微分公式。由于椭球参数的微小变化所引起的大地坐标和方位角改正数公式,称为第二类微分公式。
  
  两个大地坐标系之间的关系,可用空间直角坐标系的形式来表达,即把大地点在空间直角坐标系中的坐标变化,用以两个椭球为中心的空间直角坐标的变化Δx、Δy、Δz和椭球参数的变化Δɑ、Δf来表示。这样建立的关系是三维的,而且比较简捷,现在已广泛使用。
  
  椭球定位时,一般都使椭球的短轴平行于地球的平自转轴,但这种平行关系是由拉普拉斯方位角条件来保证的,而实测的天文方位角总是带有一定的误差。因此,不同的空间大地坐标系的三轴之间不可能完全平行,总是存在着微小的差异,而形成一个角度,这个角度称为欧拉角。在进行大地坐标系的换算时,应顾及欧拉角的影响。如果两大地坐标系中所使用的尺度不一致,还应顾及由此引起的差异。
  
  大地测量投影  大地控制网在平面上计算和平差,要比在椭球面上简单得多。因此,当区域不大时,可将椭球面上的几何元素归算到平面上,然后进行平面上的计算和平差,并将所得的平面坐标直接用于测图。为此,必须采用某种投影法来建立大地点在椭球面上的大地坐标与其平面直角坐标之间的严密的数学关系。满足大地测量要求的投影法,称为大地测量投影。
  
  由于椭球面是一个不可平展的曲面,投影时必然要产生投影变形,不可能要求椭球面上图形的形状和面积以及两点间的距离和方向投影后都保持不变。在选择投影法时,要求采用投影变形小,计算公式简单的投影法。现代大地测量都采用正形投影法,数学上称为保角映射或保形映射。椭球面上的无穷小图形经过投影后,其形状保持不变。
  
  中国在1949年以前采用兰伯特圆锥投影,此后,改用高斯-克吕格尔投影。两者都是正形投影。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条