说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 幂单矩阵
1)  unipotent matrix
幂单矩阵
2)  Idempotent matrix
幂等矩阵
3)  power matrices
可幂矩阵
4)  nilpotent matrix
幂零矩阵
1.
In this paper,the concept of nilpotent matrix is used to discuss some characters of the nilpotent matrix in general number field.
利用幂零矩阵的概念,在一般数域上讨论了幂零矩阵的一些性质,给出了矩阵是幂零矩阵的一个充要条件,最后利用幂零线性变换的概念,在一般数域上讨论了幂零线性变换一定存在一组基使其在这组基下的矩阵是若当形矩阵,从而给出幂零矩阵的若当标准形。
2.
However, the properties of nilpotent matrix have not been much explored although its definition is given in discussing the multiplication of matrix.
在高等代数中矩阵是研究问题很重要的工具,在讨论矩阵的乘法运算时给出了幂零矩阵的定义,但对其性质研究很少。
3.
This paper is derived to the study of the equation X~m=A where A is a n×n nilpotent matrix with 2≤m∈N.
主要研究当A是幂零矩阵时,方程Xm=A的性质。
5)  power LCM matrix
幂LCM矩阵
1.
In this paper,a necessary and sufficient conditions on the gcd closed set S with |S|=4 such that the power GCD matrix(Se)on S divides the power LCM matrix on S in the ring M4(Z) of 4×4 matrices over the integers is proved.
在本文中,我们给出了关于四元gcd封闭集S的充分必要条件,使得在环M4(Z)中,定义在S上的e次幂GCD矩阵(Se)整除e次幂LCM矩阵[Se]。
2.
Shaofang Hong conjectured in 2002 that for a given positive integer t there is a positive integer k(t) depending only on t, such that if n≤k(t), then the power LCM matrix ([x_i, x_j]~t) defined on any gcd-closed set S={x_1,…,x_n} is nonsingular; but for n≥k(t)+1, there exists a gcd-closed set S={x_1,…,x_n} such that the power LCM matrix ([x_i, x_j]~t) on S is singular.
洪绍方在2002年猜想:对于给定的一个正整数t,存在一个仅由t决定的正整数k(t),使得当n≤k(t)时,定义在任意gcd闭集S={x1,…,xn}上的幂LCM矩阵([xi,xj]t)是非奇异的;而当n≥k(t)+1,则存在一个gcd闭集S={x1,…,xn},使得定义在其上的幂LCM矩阵([xi,xj]t)奇异。
3.
In this paper, we showthat for any real number e ≥1 and n ≤7, the power LCM matrix ([x_i,x_j]~e) definedon any gcd-closed set S = {x_1,.
第i 行j 列元素由xi 和xj 的最小公倍数的e次幂[x_i,x_j]~e 构成的n ×n矩阵([x_i,x_j]~e),称为定义在S 上的e次幂LCM矩阵。
6)  nilpotent matrices
幂零矩阵
1.
On Nilpotent Matrices over Idempotent and Right-sided Quantale;
幂等右侧Quantale上的幂零矩阵
2.
In this paper,we characterize isotropy subgroups of Jordan normal form of 3-nilpotent matrices under the conjugate action of GLn(F).
刻画了3-幂零矩阵的Jordan标准型在GLn(F)共轭作用下的迷向子群的结构。
3.
This paper devotes to an approach to nilpotent matrices and gives a classification theorem on lower dimensional nilpotent algebras.
讨论了幂零矩阵的性质 ,给出了低维幂零代数的分
补充资料:幂等元的半群


幂等元的半群
idempotents, semi -group of

式.幂等元的半群【i山和四把血,胭山.gr0llPof;“朋MnoTe“-功。no刀yll.担na」,幂等元半群(idemPotent semi-gr。叩) 每个元素皆为幂等元(记enlPo忆nt)的半群.幂等元半群亦称为带(恤nd)(这与半群的带(比11dof~一grouP)的概念相容:幂等元半群是单元素半群的带).交换的幂等元半群称为半格(~一扭仗元c);这术语与它在偏序集理论中的应用相容:若对交换幂等元半群S考虑其自然偏序,则元素a,b任S的最大下界正是ab.半格是二元半格的次直积.若半群S满足恒等式尤y=x,xy=y中的一个,则称S为奇异的(sin孚har);在第一种情形,S是左奇异的(left-sin酗ar),或左零半群(~一gro叩of left Zero‘),第二种情形是右奇异的(石乡止.singr血r)或右零半群(s咖一gro叩of rigllt zeros).一个半群称为矩形(既-扭ng口ar)半群,若它满足恒等式义yx二戈(该术语有时在稍广的意义下使用,见【11).对半群S,下列条件是等价的:1)5是矩形半群;2)5是理想单的幂等元半群(见单半群(s加P1e~·gro叩));3)S是幂等元完全单半群(c omplete】y一sirnples洲一grouP);及4)S同构于直积L xR,其中L是左奇异半群而R是右奇异半群.每个幂等元半群是C五成阔半群(Oifford sen卫·gro叩)且分裂成矩形半群的一个半格(亦见半群的带(比nd ofs洲·groups)).这个分裂是幂等元半群的许多性质研究的起点.幂等元半群是局部有限的 幂等元半群已从各种观点得到研究,包括簇论的观点.令所有幂等元半群的簇为见,在【4]一16]中完全地描述了黔的所有子簇的格;它是可数的,分配的,且簇见的每个子簇由一个恒等式确定.这个格可图解如下: II 二,:二J,,:角二,:.二:,, _1 FJ.工V今飞冲匕母丁yr‘yl 艺卜,’=Z,’F仁之子洲叼2盛.丢二月工yZ二yXZ 华‘\\工岁夕zIt, J二y图中对黔中较低层的一些簇给出了与其相应的恒等
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条