说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 有效互作用
1)  effective interaction
有效互作用
2)  Skyrme effective interaction
Skyrme有效相互作用
1.
In this paper, we calculate the properties of the spin polarized isospin asymmetric nuclear matter by employing the Skyrme effective interaction with two sets of parameters SKM * and SⅢ, giving the equation of the state and the radio det(1/χ)det(1/χ F) which is shown as a function of the density for several values of the asymmetry parameter β.
利用Skyrme有效相互作用 ,采用核子 -核子相互作用参数SKM 和SⅢ对自旋极化的同位旋非对称核物质的特性和状态方程进行了研究 ,讨论了非对称核物质的磁化率随密度的变化关系及其同位旋依赖性 。
2.
The properties of the spin polarized isospin symmetric nuclear matter and neutron matter as well as their equations of state are investigated by employing the Skyrme effective interaction with four sets of parameters SKM *, SⅢ, SLy230a and SLy230b.
利用Skyrme有效相互作用对自旋极化的同位旋对称核物质和中子物质的特性进行了研究 。
3)  effective interaction
有效相互作用
1.
The experimental data of 12 C( p,p′)(p,n ) and 40 Ca( p,p′ ) in the low energy region(≤80MeV) were analyzed using M3Y effective interaction and Halderson’s effective interaction in the theoretical frame of DWBA.
利用低能区(不大于80MeV)中的12C(p,p′),12C(p,n)及40Ca(p,p′)实验数据,在DWBA理论框架下,检验了由Halderson提出的一种新的低能区核子核子有效相互作用,分析了此种核子核子有效相互作用与M3Y核子核子有效相互作用的相似性及其差异,并采用不同方法对其张量力成分进行了修正。
2.
A complex density-dependent and energy-dependent effective interaction(CEG) and transition densities obtained from electron scattering were used in the calculations.
采用动量空间DWBA理论,利用由电子散射实验得到的核结构信息,和低能区的密度依赖、能量依赖的复数有效相互作用对数据进行了分析。
3.
The interacting boson model with the boson effective interaction has been used to studythe nuclear spectra.
作者曾经用相互作用玻色子模型中的玻色子有效相互作用研究核谱,本文用玻色子组态混合波函数计算三个四玻色子核的E2跃迁几率,由能量矩阵的对角化得出组态混合波函数,理论计算的结果和实验的符合程度是令人满意的,表明这种模型是成功的。
4)  boson effective interaction
玻色子有效相互作用
5)  effective nucleon-nucleon interactions
核子-核子有效相互作用
1.
Starting from shell model configurations and effective nucleon-nucleon interactions,we proposed a microscopic approach to study the properties of high-spin states in even-even nuclei in terms of the generalized boson expansion theory.
从壳模型组态及核子-核子有效相互作用出发,借助于广义的玻色子展开方法,建立了一种研究偶偶核高自旋态的微观理论方案。
6)  empirical effective interaction
经验有效相互作用
补充资料:γ射线同物质的相互作用
      γ射线在物质中具有较强的穿透本领。能量在10MeV以下的γ射线同物质相互作用时,主要是发生光电效应、康普顿效应、电子偶效应等三种效应。
  
  光电效应  γ光子穿过物质时同原子中的束缚电子相互作用,光子把全部能量交给这一束缚电子,使之克服在原子壳层中的结合能(电离能)而发射出去,这就是光电效应。光电效应截面以一种复杂的方式随入射光子能量和吸收体原子序数而改变,但总的趋势是随光子能量增加而减小,随原子序数增加而增加。在光子能量小于1MeV时,光电效应在三种主要效应中占优势,光电截面在总截面中占主要部分。
  
  康普顿效应 当入射光子能量逐渐增大到1MeV时,γ射线同物质相互作用逐渐由光电效应过渡到康普顿效应。
  
  康普顿效应是γ光子同电子之间的散射。入射γ光子把一部分能量传递给电子,光子本身能量减少并向不同的方向散射,散射效应中获得能量的电子叫反冲电子(图1)。能够发生散射效应的电子既可以是自由电子,也可以是束缚于原子之中的电子。康普顿效应发生在γ光子和电子之间,其作用截面是对单个电子而言的。因此,对原子序数为Z的整个原子,散射截面就是单个电子作用截面的 Z倍。当入射光子能量较高时,截面与光子能量近似成反比。
  
  电子偶效应  是γ光子同物质的第三个重要的相互作用,入射光子同原子核电场或电子电场相互作用都可以产生电子偶效应,发生这个效应的阈能是1.02MeV。在电子偶效应中,入射光子转化为一个正电子和一个负电子,它们的动能是入射光子能量同1.02MeV之差。电子偶效应的截面也是入射光子能量和吸收物质原子序数的函数。当入射光子能量稍大于 1.02MeV时,电子偶效应的截面随光子能量E 线性增加;在高能时,其截面正比于lnE;能量很高时,截面趋近于一个常数。然而不论在高能或低能,截面都正比于吸收体原子序数Z的二次方。
  
  其他效应  除上述主要的三种效应外,γ射线同物质的相互作用还有其他的效应, 如相干散射。 在低能(100keV)时,相干散射是很重要的,尤其是重元素中束缚得比较紧的电子有利于这种散射。这种散射长期以来一直是X 射线晶体学的基础。另外在入射光子能量较高时还有光核反应等。
  
  γ射线的吸收  当γ射线穿过物质时,三种效应都可能发生。在忽略其他效应时,将这三种效应的吸收系数相加就可得到总的线性吸收系数。式中μph、μσ、μp分别表示这三种效应中的吸收系数。图2表示γ射线在铅中产生三种不同效应的几率。
  
  窄束γ 射线在物质中的衰减规律是 或,其中Io、I分别代表穿透前后的γ射线强度,μ是吸收系数,μm是质量吸收系数,ⅹ是γ射线穿过的厚度,ⅹm是质量厚度。
  
  由于γ射线穿过物质时会发生各种效应,同时γ射线又很容易被探测到,使得γ射线在诸如工业探伤、测厚、冶金、自动化、医疗等方面都获得广泛的应用。
  
  

参考书目
   K. Siegbahn, ed., Alpha-, Beta- and Gamma-Ray Spectroscopy,Vol. 1,North-Holland,Amsterdam,1965.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条