说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非顽磁性铁磁材料
1)  non-retentive ferromagnetic material
非顽磁性铁磁材料
2)  retentive ferromagnetic material
顽磁性铁磁材料
3)  saturation of magnetic material
铁磁材料非线性
4)  finishing characteristics
非铁磁性材料
5)  ferromagnetic material
铁磁性材料
1.
This paper discusses the characteristics and mechanism of MAF,analyses the characteristics of the internal cylinder surface by MAF and researches the internal cylinder surface manufacturing theory of ferromagnetic material at the same time the critical speed formula is deduced.
对内圆面的磁力研磨特点进行了分析,着重对铁磁性材料的内圆柱面加工理论进行了研究,推导出了其临界速度公式。
2.
As a general engineer material, ferromagnetic material’s failure leads to huge national economic loss.
材料在变动负荷作用下发生失效的现象称为疲劳,铁磁性材料作为工程的常用材料,其失效对国民经济造成了重大损失。
3.
With the generation/control technology of plasma applied to the sputtering system,the problems of low utilization ratio of target material in magnetron sputterintg and difficult deposition of ferromagnetic materials were solved.
该镀膜机将等离子体发生和控制技术应用于溅射镀膜中,克服了磁控溅射的靶材利用率低及难以沉积铁磁性材料的缺点。
6)  ferromagnetic materials
铁磁性材料
1.
In order to study the linking between metal magnetic memory signal of ferromagnetic materials and stress, based on wavelet analysis the metal magnetic memory signal was decomposed into two parties, i.
为了研究铁磁性材料金属磁记忆信号与其内部机械应力之间的关系,应用小波分析技术,将金属磁记忆信号分解为大尺度逼近和细节分量两个部分,然后计算其细节分量的关联维数,并考察机械应力与关联维数变化之间的关系。
2.
The effects of DC magnetic field on friction and wear of ferromagnetic materials at different loads have been studied.
对直流磁场影响下铁磁性材料载荷变化时摩擦磨损的研究表明,各种载荷下磁场都能显著减小摩擦、减轻磨损。
3.
This paper study the effect of the tribological property of the ferromagnetic materials couples on magnetic intensity.
研究了磁场强度对铁磁性材料摩擦副摩擦学性能的影响,发现在一定磁场强度范围内,磁场强度可以减小铁磁性材料摩擦副的磨损率和降低其摩擦系数,原因是磁场强度的增强提高了对磨屑的吸附和氧化能力,并提高了铁磁性材料的强度,从而改善了铁磁性材料摩擦副的摩擦学性能。
补充资料:半导体非线性光学材料


半导体非线性光学材料
semiconductor nonlinear optical materials

载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条