说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 辐照诱变
1)  radiation mutation
辐照诱变
2)  irradiation induced breeding
辐照诱变育种
3)  radiation induced dimensional change
辐照诱发的尺寸变化
4)  Radiation-induced mutation
辐射诱变
1.
)have the ability of strong restoring,high combining,and good resisting,which were bred and released by combined techniques of radiation-induced mutation,polymerization hybridization,and temperature tolerance screening.
采用辐射诱变、杂交及逆境温度筛选相结合的综合育种方法,成功育成了辐恢838及其衍生恢复系辐恢718、辐恢305、中恢218、绵恢3728、糯恢1号等12个恢复力强、配合力高、抗逆性好的恢复系。
5)  radiation induction
辐射诱变
1.
The present paper introduced in detail the general procedure of high-production cell line screenings used in plant cell culture,the methods commonly used and their actual applying situations,emphasizing the application of the radiation induction treatment at the present stage and its developing prospects.
在介绍植物细胞培养用高产细胞系筛选的一般步骤、常用方法及这些方法的实际应用状况的基础上,着重介绍了辐射诱变处理在现阶段高产细胞系筛选中的应用及其发展前景。
2.
Through calculating the LD50 and observing the plant’s external morpha, good methods have been explored for radiation induction of 60Co-γradial on Ophiopogon japonicus‘Nanus’, and it will provide important radiation induction data in theory.
本项研究以日本矮生沿阶草和细叶沿阶草为材料,筛选出了适宜日本矮生沿阶草和细叶沿阶草诱导愈伤及分化的培养基,建立了日本矮生沿阶草和细叶沿阶草的再生体系,为大面积推广种植过程中的快速繁育提供了重要依据;并对日本矮生沿阶草愈伤组织及其植株进行不同剂量的60Co-γ射线辐射处理,通过半致死剂量的统计计算以及植株外部形态的观测,对其诱变情况进行初步研究,为辐射诱变新品种提供重要的理论数据。
6)  radiation mutation
辐射诱变
1.
13(97γ-254)was breed by routine hybridization and radiation mutation,with characters of large ear(44.
概述了采用常规杂交方法与核辐射诱变相结合的育种途径,培育成大穗、大粒型小麦新品种西辐十三号(97-γ254)。
补充资料:诱变育种
      即利用物理、化学等因素诱导作物发生可遗传的变异,从中选择有用的个体直接或间接育成新品种。它是继作物纯系育种和杂交育种之后发展起来的一项育种技术,具有下列特点:①突变频率比自然突变高几百倍至几千倍,且变异谱广泛;②由诱变引起的染色体断裂与重接,可打破优良性状与不良性状间的连锁;③能比较有效地改良个别性状,如早熟、矮秆、抗病、优质等;④诱发的变异较易稳定。
  
  发展简史  1927年美国H.J.马勒发现 X射线能引起果蝇发生可遗传的变异。1928年美国L.J.斯塔特勒证实X射线对玉米和大麦有诱变效应。此后,瑞典H.尼尔松-埃赫勒和A.古斯塔夫森在1930年利用辐射得到了有实用价值的大麦突变体;D.托伦纳在1934年利用 X射线育成了优质的烟草品种"赫洛里纳"。1942年,C.奥尔巴克发现芥子气能导致类似 X射线所产生的各种突变,1948年A.古斯塔夫森用芥子气诱发大麦产生突变体。50年代以后,诱变育种方法得到改进,成效更为显著,如美国用X 射线和中子引变,育成了用杂交方法未获成功的抗枯萎病的胡椒薄荷品种Todd's Mitcham等。70年代以来,诱变因素从早期的 X射线发展到γ射线、中子、多种化学诱变剂和生理活性物质,诱变方法从单一处理发展到复合处理,同时,诱变育种与杂交育种、组织培养等密切结合,大大提高了诱变育种的实际意义。
  
  中国在宋朝宣和年间曾有用药物处理牡丹的根,从而诱发花色变异的记载。但用现代方法进行诱变育种,则始于50年代后期。1965年以后各地陆续用此法育成了许多优良品种投入生产。据1985年的不完全统计,诱变育成的农作物优良品种有190多个。
  
  方法  物理、化学诱变的方法及其机理如下述。
  
  物理诱变  应用较多的是辐射诱变,即用α射线、β射线、γ射线、Χ射线、中子和其他粒子、紫外辐射以及微波辐射等物理因素诱发变异。当通过辐射将能量传递到生物体内时,生物体内各种分子便产生电离和激发,接着产生许多化学性质十分活跃的自由原子或自由基团。它们继续相互反应,并与其周围物质特别是大分子核酸和蛋白质反应,引起分子结构的改变。由此又影响到细胞内的一些生化过程,如 DNA合成的中止、各种酶活性的改变等,使各部分结构进一步深刻变化,其中尤其重要的是染色体损伤。由于染色体断裂和重接而产生的染色体结构和数目的变异即染色体突变,而DNA分子结构中碱基的变化则造成基因突变。那些带有染色体突变或基因突变的细胞,经过细胞世代将变异了的遗传物质传至性细胞或无性繁殖器官,即可产生生物体的遗传变异。
  
  诱变处理的材料宜选用综合性状优良而只有个别缺点的品种、品系或杂种。由于材料的遗传背景和对诱变因素的反应不同,出现有益突变的难易各异,因此进行诱变处理的材料要适当多样化。由于不同科、属、种及不同品种植物的辐射敏感性不同,其对诱变因素反应的强弱和快慢也各异。如十字花科白菜的敏感性小于禾本科的水稻、大麦,而水稻、大麦的敏感性又小于豆科的大豆。另外,辐射敏感性的大小还同植物的倍数性、发育阶段、生理状态和不同的器官组织等有关。如二倍体植物大于多倍体植物,大粒种子大于小粒种子,幼龄植株大于老龄植株,萌动种子大于休眠种子,性细胞大于体细胞等。根据诱变因素的特点和作物对诱变因素敏感性的大小,在正确选用处理材料的基础上,选择适宜的诱变剂量是诱变育种取得成效的关键(表 1)。适宜诱变剂量是指能够最有效地诱发作物产生有益突变的剂量,一般用半致死剂量(LD50)表示。不同诱变因素采用不同的剂量单位。Χ、γ射线线吸收剂量以拉德(rad)或戈瑞(GY)为单位,照射剂量以伦琴(R)为单位,中子用注量表示。同时要注意单位时间的照射剂量(剂量率、注量率)以及处理的时间和条件。
  
  
  辐照方法分外照射和内照射两种,前者指被照射的植物接受来自外部的γ射线源、Χ射线源或中子源等辐射源辐照,这种方法简便安全,可进行大量处理。后者指将放射性物质(如32P、35S等)引入植物体内进行辐照,此法容易造成污染,需要防护条件,而且被吸收的剂量也难以精确测定。干种子因便于大量处理和便于运输、贮藏,用于辐照最为简便。
  
  化学诱变  化学诱变除能引起基因突变外,还具有和辐射相类似的生物学效应,如引起染色体断裂等,常用于处理迟发突变,并对某特定的基因或核酸有选择性作用。化学诱变剂主要有:①烷化剂。这类物质含有1个或多个活跃的烷基,能转移到电子密度较高的分子中去,置换其他分子中的氢原子而使碱基改变。常用的有甲基磺酸乙酯(EMS)、乙烯亚胺(EI)、亚硝基乙基脲烷(NEU)、亚硝基甲基脲烷(NMU)、硫酸二乙酯(DES)等。②核酸碱基类似物。为一类与DNA碱基相类似的化合物。渗入DNA后,可使DNA复制发生配对上的错误。常用的有5-溴尿嘧啶(BU)、5-溴去氧尿核苷(BudR)等。③抗生素。如重氮丝氨酸、丝裂毒素C等,具有破坏DNA和核酸的能力,从而可造成染色体断裂。
  
  化学诱变主要用于处理种子,其次为处理植株。种子处理时,先在水中浸泡一定时间,或以干种子直接浸在一定浓度的诱变剂溶液中处理一定时间,水洗后立即播种,或先将种子干燥、贮藏,以后播种。植株处理时,简单的方法是在茎秆上切一浅口,用脱脂棉把诱变剂溶液引入植物体,也可对需要处理的器官进行注射或涂抹。应用的化学诱变剂浓度要适当(表 2)。处理时间以使受处理的器官、组织完成水合作用和能被诱变剂所浸透为度。化学诱变剂大都是潜在的致癌物质,使用时必须谨慎。  诱变后代的处理  经诱变处理产生的诱变一代,以M1表示。由于受射线等诱变因素的抑制和损伤,M1的发芽率、出苗率、成株率、结实率一般较低,发育延迟,植株矮化或畸形,并出现嵌合体。但这些变化一般不能遗传给后代。诱变引起的遗传变异多数为隐性,因此M1一般不进行选择,而以单株、单穗或以处理为单位收获。诱变二代(M2)是变异最大的世代,也是选择的关键时期,可根据育种目标及性状遗传特点选择优良单株(穗)。多数变异是不利的,但也能出现早熟、杆矮、抗病、抗逆、品质优良等有益变异,变异频率约为0.1~0.2%。诱变三代(M3)以后,随着世代的增加,性状分离减少,有些性状一经获得即可迅速稳定。经过几个世代的选择就能获得稳定的优良突变系,再进一步试验育成新品种。具有某些突出性状的突变系,还可用作杂交亲本。
  
  诱变育种存在的主要问题是有益突变频率仍然较低,变异的方向和性质尚难控制。因此提高诱变效率,迅速鉴定和筛选突变体以及探索定向诱变的途径,是当前研究的重要课题。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条