说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 冻结深部黏土
1)  deep frozen clay
冻结深部黏土
1.
The loading and unloading triaxial tests were carried out on the deep frozen clay at four temperature gradients using the method of freezing before K0 consolidation,and attenuation law for deviatoric stress as well as deviatoric stress increasing rates in the process of loading and unloading was investigated.
采用先冻结后K0固结(FC)的传统冻土试验方法进行4种不同温度梯度冻结深部黏土的加、卸荷三轴试验,研究不同温度梯度冻结深部黏土在加、卸荷过程中的偏应力增长速率及偏应力的衰减规律。
2)  frozen clay
冻结黏土
1.
Experiment and analysis on drillability of artificially frozen clay;
人工冻结黏土可钻性试验与分析
2.
Uni-axial compressive strength tests were conducted on four frozen clay at various loading rate and at the temperatures of 0℃、-15℃、-25℃、-45℃.
试验结果表明:(1)冻结黏土瞬时单轴抗压强度与温度、含水量密切相关,其值随温度的降低而增大,随含水量的增加而增大;(2)在-25℃条件下,当冻结黏土的含水量低于其最优含水量时,其瞬时单轴抗压强度随含水量的增加而明显增大,而当土体含水量高于其最优含水量时,其瞬时单轴抗压强度随含水量的增加,没有明显变化。
3)  deep frozen soil
深部冻土
4)  soil frost depth
土冻结深度
5)  frozen silty clay
冻结粉质黏土
1.
This text get the compression strength variety regulation of artificial frozen silty clay along with frozen temperature and moisture content by the compression strength experiment in different temperature and moisture content,and the result has some certain reference value to the design and construction of frozen engineering.
通过对不同温度、不同含水率下的人工冻结粉质黏土单轴无侧限抗压强度试验,得出其抗压强度随冻结温度和含水率的变化规律,试验结果对冻土工程的设计和施工具有一定的参考价值。
6)  clay frozen in situ
原位冻结黏土
1.
Experimental study of uniaxial compression of clay frozen in situ;
原位冻结黏土单轴压缩试验研究
补充资料:磁冻结定理
      阐述理想导电流体和磁场一起运动的规律的定理,即①开尔文定理:通过和理想导电流体一起运动的任意封闭曲线所围面积的磁感应通量守恒;②亥姆霍兹定理:在理想导电流体中,起初在某磁力线上的流体元以后一直位于此磁力线上。此两定理与涡旋在流体中运动的两条同名定理类似。
  
  假设流体是理想导电流体(电导率σ=∞),则描述磁场变化率的方程为:
  
  
  
    式中B为磁感应强度;v为流体速度(见磁流体力学基本方程组)。此方程和无粘性不可压缩流体的涡旋方程相似,故有上述同涡旋相对应的两条定理。
  
  为了解磁冻结定理的实质,可考察流体最简单的运动对磁场的影响。假设在理想导电流体中有一均匀磁场B(见图),在垂直于磁场的平面上取一半径为 R的流体环г0。如果г0以径向速度vR向外膨胀,由于它切割磁力线,必然产生顺时针环向电场vRB。由于流体电阻为零,在г0中必然产生一等量逆时针环向电场E,否则将发生无穷大电流。因此,根据法拉第电磁感应定律可以算出,流体环从г0经时间dt膨胀到г 位置时,环内的磁感应通量必须减少2πRvRBdt,方可抵消流体环膨胀时切割磁力线产生的电场 vRB。这些应减少的磁感应通量正好在г环和г0环之间,所以如果从运动的流体环上看,流体环围绕的磁感应通量不变,磁力线随着流体环一起向外膨胀,即流体如同固结在磁力线上。把这种简单的流动情况推广到理想导电流体的任意流动情况,就可得到磁冻结定理中的两条定理,它们都有严格的数学证明。
  
  1942年H.阿尔文首次提出:"理想导电流体不能作垂直于磁力线的相对流动,因此流体物质固结在磁力线上。"1960年S.戈德斯坦经过严格的论证,得到描述亥姆霍兹定理的数学形式。
  
  

参考书目
   V. C. A.Ferraro and C.Plumpton,Introduction to Magneto-fluid Mechanics,Oxford Univ.Press,London,1961.
   T. J. M.博伊德、J.J.桑德森著,戴世强、陆志云译:《等离子体动力学》,科学出版社,北京,1977。(T.J.M.Boyd andJ. J. Sanderson,Plasma Dynamics,Nelson,London,1969.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条