说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 中药大承气汤
1)  traditional Chinese medicine Da Cheng Qi Tang
中药大承气汤
2)  Dachengqi Tang/pharmacodynamics
大承气汤/药效学
3)  DACHENGQI DECOCTION/pharmacology
大承气汤/药理学
4)  Dachengqi Tang
大承气汤
1.
Experience in the Application of Dachengqi Tang to Surgery;
大承气汤在外科中的应用体会
2.
Studies on character and microstructure of medicinal materials in Dachengqi Tang;
大承气汤的药材特性与显微鉴定
3.
To further investigate the mulitple therapeutic mechanism of Dachengqi Tang in severe acute pancreatitis Methods:Severe pancreatitis SD rat model was induced by retrograde injection of 5% sodium taurocholic acid into the pancreatic duct.
目的 :进一步认识大承气汤对急性胰腺炎的治疗机理。
5)  Large Chengqi decoction
大承气汤
1.
The Refractoriness Constipation after Bone Fracture Treated in Large Chengqi Decoction;
大承气汤加减治疗骨折后难治性便秘
2.
The Effect of Large Chengqi Decoction on Gut Hormone Externalization and Promoting Gastrointestinal Motility;
大承气汤对胃肠激素的分泌及其促胃肠运动关系的研究
6)  Da Cheng Qi Tang
大承气汤
1.
Effects of Da Cheng Qi Tang (大承气汤) on Deep Muscular Plexus Interstitial Cells of Cajal of Intestine in Rats with Multiple Organ Dysfunction Syndrome;
大承气汤对MODS大鼠小肠深部肌间Cajal间质细胞损伤的作用
2.
Effect of Serum after Taking Da Cheng Qi Tang, Emodin, and Magnolol on Pacemaker Currents of Interstitial Cells of Cajal in Rat;
大承气汤和大黄素及厚朴酚对大鼠小肠Cajal间质细胞起搏电流的影响
3.
Objective To survey curative effects of Da Cheng Qi Tang on severe acute pancreatitis and summarize nursing methods.
目的观察大承气汤治疗重症急性胰腺炎的疗效及总结护理方法。
补充资料:大 气 科 学

                 大 气 科 学


   大气科学是研究大气的各种现象(包括人类活动对它的影响),这些现象的演变规律,以及如何利用这些规律为人类服务的一门学科。大气科学是地球科学的一个组成部分。它的研究对象主要是覆盖整个地球的大气圈。此外,还研究太阳系其他行星的大气。大气圈,特别是地球表面的低层大气,以及和它相关的水圈、岩石圈、生物圈是人类赖以生存的主要环境。大气的各种现象及其变化过程,既可带来雨泽和温暖,造福人类;也可造成酷暑严寒,以至旱涝风雹等灾害,直接影响人类的生产和安全。人类在生产和生活的过程中,也不断地影响着自然环境(包括大气)。如何认识大气中的各种现象,如何及时而又正确地预报未来的天气、气候,并对不利的天气、气候条件进行人工调节和防御,是人类自古以来一直不断探索的领域。随着科学技术和生产的迅速发展,大气科学在国民经济和社会生活中的巨大作用日益显著,其研究领域已经越出通常所称的气象学的范围。本文仅对大气科学的研究对象、研究特点、学科分支、同其他学科的关系以及发展状况作一概括描述,大气科学丰富的内容和悠久的历史则由本卷其他有关条目介绍。
                研 究 对 象
  覆盖整个地球的大气,质量约 5.3×10克,约占地球总质量的百万分之一。由于地心引力的作用,大气质量的90%聚集在离地表15公里高度以下的大气层内,99.9%在48公里以内。2000公里高度以上,大气极其稀薄,逐渐向星际空间过渡,无明显上界。大气本身的可压缩性、太阳辐射、地球的形状和它的重力、地球的公转和自转、地球表面的海陆分布和地形起伏、地球的演化和地球生态系统等是造成地球大气特定组分、特定结构和特定运动状态的主要自然条件。人类活动及其对生态因素所起的作用,是影响大气组分、大气结构和大气运动的人为条件。
 地球大气的组分以氮、氧、氩为主,它们占大气总体积的 99.96%。其他气体含量甚微,有二氧化碳、氪、氖、氦、甲烷、氢、一氧化碳、氙、臭氧、氡、水汽等。大气中还悬浮着水滴、冰晶、尘埃、孢子、花粉等液态、固态微粒。太阳系的九大行星,都存在大气 (见行星大气)。地球大气中的氧气是人类赖以生存的物质基础,氧气的出现及其含量的变化,同地球的形成过程和生物的演化过程密切相关(见地球大气演化)。大气中的水汽来自江河、湖泊和海洋表面的蒸发,植物的散发,以及其他含水物质的蒸发。在夏季湿热处(如高温的洋面或森林),大气中水汽含量的体积比可达4%,而冬季干寒处(如极地),则低于0.01%。水汽随着大气温度发生相变,成云致雨,成为淡水的主要资源。水的相变和水文循环过程不仅把大气圈同水圈、岩石圈、生物圈紧密地联系在一起,而且对大气运动的能量转换和变化有重要影响(见大气环流的能量平衡和转换)。大气中的二氧化碳含量受植物的光合作用、动物的呼吸作用、含碳物质的燃烧以及海水对二氧化碳的吸收作用所影响,在工业发展、化石燃料(如煤、石油、天然气)燃量增加、森林覆盖面积减少的情况下,已观测到二氧化碳含量与年俱增。大气中本来没有或极少存在的如甲烷、一氧化二氮等气体,由于人类活动的影响,近年来它们的含量也迅速增加。这些有温室效应的气体含量的变化对大气温度的重要影响,已成为研究现代气候变化的一个前沿课题。大气中臭氧的含量很少,即使在离地表20~30公里的浓度最大处,其含量也不到这层大气的十万分之一。然而大气臭氧层能够大量吸收太阳紫外辐射中对生命有害的部分,起着对人类十分重要的保护作用。另外,大气臭氧层的存在,对平流层大气的温度也有重要作用。由于人类活动对高空光化学过程的影响会引起臭氧含量的变化,人类活动对臭氧含量影响的研究,已成为医学界和气象学界共同关注的问题。
 地球大气的密度、温度、压力、组分和电磁特性等都随高度而变化,具有多层次的结构特征。大气的密度和压力一般随高度按指数律递减;温度、组分和电磁特性随高度的变化不同,按各自的变化特征可分为若干层次。
 地球大气按温度随高度的变化,由地表向上,依次分为对流层、平流层、中层和热层对流层紧邻地表,其中温度随高度增加而降低,平均每升高1公里约减少6.5C,至对流层顶温度降到极小值。对流层中的对流运动显著,是热量铅直输送的主要控制因子,云和降水主要发生在这一层。对流层顶的高度在赤道地区约18公里,中纬度地区约12公里,极地地区约8公里。平流层位于对流层之上,平流层顶离地表约50公里。平流层中的臭氧层吸收太阳紫外辐射,是使这层大气温度随高度增加而上升的主要因子。这层大气温度层结非常稳定,其中的热量铅直输送以辐射传输为主。中层位于平流层之上,中层顶离地表约85公里,层内温度随高度增加而下降。热层位于中层之上,热层顶离地表约500公里。这层大气由于吸收太阳紫外辐射,温度随高度增加而上升。热层顶以上为外逸层,那里大气已极稀薄,每立方厘米不到10个原子(海平面处每立方厘米约10(个原子)。
 地球大气按组分状况可分为匀和层和非匀和层。离地表约85公里高度以下为匀和层,层内的大气组分比例相同,平均分子量为常数。约110公里高度以上为非匀和层,层内大气组分按重力分离后,轻的在上,重的在下,平均分子量随高度增加而减小。离地表 85~110公里为匀和层到非匀和层的过渡层。
 地球大气按电磁特性可分为中性层、电离层和磁层。由地表向上到 60公里高度为中性层。离地表 60公里到500~1000公里高度为电离层。离地表500~1000公里以上为磁层。电离层能反射无线电波,对电波通信极为重要。磁层是地球大气的最外层,磁层顶是太阳风动能密度和地磁场能密度相平衡的曲面。
 地球大气的运动非常复杂。地球的自转和公转运动以及地球自转轴的方向产生了地球上的昼夜交替、四季变化和温度自赤道向两极递减的规律。由于海陆分布和地貌等的不均匀性,地表的温度并不完全按纬圈带分布,而呈现出非带状的不均匀分布。大气的温度、压力和密度之间有密切的关系。大气压力分布(即气压场)的不均匀会导致大气的运动,大气的运动又会引起气压场的重新调整。大气的水平辐合运动和辐散运动会引起大气在铅直方向的上升运动和下沉运动,大气的铅直运动也会影响大气的水平运动。大气通过机械运动、热运动等多种运动形式进行水平方向和铅直方向的物质和能量的传输和转换。整个大气圈通过各种机制相互紧密地联系在一起,形成了空间尺度小至几米以下、大至几千公里甚至上万公里,时间尺度短至几秒、长至数十天或更长时间的多种大气运动系统。在影响大气运动的因素中,人为的因素在变化着(如工农业生产引起大气中有温室效应的气体增加,大面积森林砍伐等),自然的因素也在变化着(如火山爆发等引起辐射能的变化,地球自转轴方向的变化等)。有些变化是有规律的,有些变化是无规则的。大气的运动也就呈现出既有规律性又有随机性的特征。
 大气科学的研究对象──地球大气,无论它的组分,它的结构,还是它的运动,都存在着确定性和不确定性两个方面。这正是大气科学研究复杂性的一面。天气变化、气候异常以及大气质量变化同人类的生活和生产活动休戚相关,正确的天气预报、气候预测以及改善大气污染情况对人们具有极大的迫切性,这正是大气科学研究为人类紧迫所需的应用性的一面。这种艰巨而有意义的科学事业不断吸引着人们去探索地球大气的奥秘。
               研 究 特 点
  大气科学研究不能仅限于大气圈 在地球表层,除大气圈以外,还存在着水圈、冰雪圈、岩石圈和生物圈,这些圈层组成一个综合系统。大气圈中发生的各种变化都受其他圈层的影响;反之,大气圈也影响着其他圈层的变化。研究大气运动的能源,大气中的物质循环、能量转换和变化过程,大气环流及天气、气候的分布和变化,都必须考虑大气圈同水圈、冰雪圈、岩石圈、生物圈之间的相互影响和相互作用。如:大气运动的根本能源是太阳辐射。但大气直接吸收的太阳辐射能仅占到达大气上界辐射能的19%,大部分太阳辐射能(约51%)是被地表吸收后,再通过感热通量、潜热通量和辐射通量方式供给大气的。这些通量受近地层大气状态、地表的状态(如海洋、陆地、植被、冰雪)及其热力特性等所控制。又如:大气的组分及其物理和化学性质,除受大气内部物理、化学过程的影响外,还受水圈、冰雪圈、岩石圈和生物圈的影响。海洋通过水的相变、水汽通量和感热通量过程,植被通过光合作用和散发过程,土壤通过水汽通量和感热通量过程等影响大气的温度、水汽和二氧化碳等的含量。火山爆发和人类活动等影响大气中气溶胶含量、大气成分和辐射过程等。再如:地形起伏和植被状况对气流的摩擦作用,影响着地表和大气之间的动量交换(见大气角动量平衡);大地形对气流的强迫绕流和强迫爬升及下滑作用,影响着大气的环流特征;海陆分布的不均匀性,影响着大气环流和天气、气候的非带状分布和南北半球的非对称分布。
 大自然是大气科学研究的实验基地 大气圈不是孤立的。在空间和时间上具有宽广尺度谱的各种大气现象也不是孤立的。它们种类繁多,相互叠加又相互影响。即使同一类现象,其结构也不尽相同。影响这些大气现象的因素非常复杂,人类至今还很难在实验室内用人工控制的方法对它们进行完整的实验和研究。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条