说明：双击或选中下面任意单词，将显示该词的音标、读音、翻译等；选中中文或多个词，将显示翻译。 您的位置：首页 -> 词典 -> 移位Hamilton矩阵 1)  shift-Hamiltonian matrix 移位Hamilton矩阵 1. The operator matrix,called shift-Hamiltonian matrix,is not in an exact Hamiltonian form,since the eigenvalues are symmetric with respect to—α/2,rather than zero in the standard Hamilton matrix. 提出了移位Hamilton矩阵的新概念,建立起相应的辛共轭正交关系;导出了对应特殊本征值的本征解,发现材料的非均匀特性使特殊本征解的形式发生明显的变化。 2)  displacement matrix 位移矩阵 1. Using the constraints of through settled point and alterable pole length and the application of displacement matrix method to the leader mechanism as a rigid-body guidance,this paper introduces the synthesis of carrying out the anticipative track and function generator and the synthesis method of function generator of alterable pole length-pendular hydraulic cylinder. 利用过定点约束及变杆长约束,介绍了用位移矩阵法进行导杆机构的刚体导引、实现预期轨迹和函数发生器综合及变杆长—摆动液压缸机构函数发生器的综合方法,并给出两个综合例子。 2. To implement the guide of rigid body,the displacement matrix is used to synthesis of four joints planar linkage. 本文提出了一种用位移矩阵法精确求解实现四个或五个位置的刚体导引机构的综合 ;实现两边架杆四个或五个对应位置的函数机构的综合、以及其它一类连杆机构综合的方法。 3. Based on the articulated beam in Bridge Project,the paper adds up the unit loading effect on the displacement matrix on other beams,and the matrix realizes the calculation methods of the computer program. 在《桥梁工程》关于铰接梁法的基础上,补充单位荷载作用在其他梁上的位移矩阵,并依此矩阵实现计算机程序的算法,同时可填补《桥梁工程》中有关铰接梁法的空白,促进学生的理解和运用。 3)  shift matrix 移位矩阵 1. This paper popularizes concept of T shift matrix,obtains the definition,function and eight properties of the generalized shift matrix. 推广了T移位矩阵的概念,给出了广义移位矩阵的定义、功能和它的五条性质。 4)  Hermitian-Hamilton matrix Hermitian Hamilton矩阵 1. Let J=OI_n-I_nO be a unit symplectic matrix,A∈C~(2n×2n) is called to be a Hermitian-Hamilton matrix if A~H=A and (JA)~H=JA,the set of all 2n×2n Hermitian-Hamilton matrices is denoted by HHC~(2n×2n). OIn-InO是单位辛矩阵,若A∈C2n×2n满足AH=A,(JA)H=JA,则称A为Hermitian Hamilton矩阵,所有2n×2n阶Hermitian Hamilton矩阵的全体记为HHC2n×2n。 5)  quasiHamilton matrix 拟Hamilton矩阵 6)  Hermitian-Hamiltonian matrix Hermite-Hamilton矩阵 补充资料：移位 分子式：CAS号：性质：见易位 说明：补充资料仅用于学习参考，请勿用于其它任何用途。 参考词条 ©2011 dictall.com