说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 集值映射向量优化问题
1)  vector optimization problems of set valued mapping
集值映射向量优化问题
1.
In this paper,we conside the properties of weak effective solution of vector optimization problems of set valued mapping.
研究了集值映射向量优化问题弱有效解的一些性质,引进了集值映射向量优化问题弱有效解的定义,并证明了集值映射向量优化问题弱有效解的几个连续性质以及具有某些性质的集值映射组成的空间是完备的。
2)  vector set-valued optimization
集值映射优化
3)  vector set-valued otimization
集值映射最优化
4)  set-valued optimization problems
集值优化问题
1.
Applying the theorem,the optimality necessary conditions and sufficient conditions for the weak efficient solutions to the set-valued optimization problems with generalized inequality constraints are obtained in ordered linear spaces.
利用此定理,在序线性空间中获得了带广义不等式约束的集值优化问题弱有效解的最优性必要条件和充分条件。
5)  set-valued optimization problem
集值优化问题
1.
Under the nearly cone-subconvexlike set-valued maps,relations of strong efficient solutions and Kuhn-Tucker saddle point of set-valued optimization problem are dicussed.
首先在局部凸Hausdorff拓扑向量空间中定义了集值优化问题的Kuhn-Tucker鞍点,在近似锥-次类凸集值映射下,讨论了集值优化问题的强有效解与Kuhn-Tucker鞍点之间的关系。
2.
It is well known that e?cient solution of set-valued optimization problem is so-lution in the sense of non-inferiority with respect to partial order.
集值优化问题的最优性条件与解集的结构理论在集值优化理论中占有重要的地位。
3.
At last, we study and depict optimal conditions of set-valued optimization problems.
本文在没有拓扑结构的实线性空间中引进了一类新的广义凸集、广义类凸集值映射等概念,并利用该广义凸性,将经典凸分析的一些结果作了一定的推广,并研究了该广义凸性条件下集合的一些性质及其择一定理的形式等,最后讨论了集值优化问题的最优性条件。
6)  vector optimization problems
向量优化问题
1.
Alternative theorem and benson proper efficiency for vector optimization problems;
择一定理及向量优化问题的Benson真有效性
2.
Using the theorem,the optimality necessary conditions and sufficient conditions for the vector optimization problems with generalized inequality constraint are obtained.
利用此定理,得到了带广义不等式约束的向量优化问题的最优性必要条件和充分条件。
3.
ε-Properly efficient solutions of vector optimization problems with set-valued maps are discussed.
本文讨论集值映射向量优化问题的ε-真有效解。
补充资料:多值映射
      从集X到集Y的多值映射是一个对应规律F,按照这个规律,对于X的每个元素x,都能相应地得到Y的一个非空子集F(x),称为x对于F的像。对于任何嶅X,集称为集对于F的像;按照F(X)嶅Y或F(X)=Y而说F把X映入或映成Y。特别是,如果每个元素的像集都只含有一个元素,那就是一个单值映射。空间与(单值)映射是拓扑学中两个最原始的基本概念,拓扑学的基本问题──空间的拓扑分类问题,是基于同胚的概念提出来的。而同胚是单值映射,所以单值映射在拓扑学中的地位,显然远比多值映射的地位重要得多。实际上,提出多值映射的概念,出发点不是单纯为了推广,而是着眼于它对其他数学领域的应用。多值映射总是可以化成单值映射来考虑的,即是,如果用2Y表示Y的所有非空子集的集合,那么从X到Y的多值映射F可以视为从X 到2Y的单值映射,记为F :X→2Y。因此,可以像单值映射一样,对于任何∈2Y定义它的逆像为,所以对于任何嶅2Y,有。设X和Y 都是T1拓扑空间,为了定义F:X→2Y 的连续性,2Y 中的拓扑结构是借助于Y的拓扑结构 τ(Y)给出的,通常有下面三种:对于任何U 嶅Y,定义,于是以为子基产生的拓扑结构称为维托利斯拓扑,而以|或为子基产生的拓扑结构则分别称为上半连续拓扑和下半连续拓扑。在这些拓扑结构下,F:X→2Y(作为单值映射)的连续性分别称为连续、上半连续或下半连续,即是,F:X→2Y称为上半连续的,如果;F称为下半连续的,如果;F称为连续的,如果它既是上半连续又是下半连续的;这里F-1>+称为集U的上逆像,而F-1>-称为集U的下逆像。子集空间2Y的拓扑结构对于由此展开的多值映射理论至关紧要,因此,对于子集空间拓扑结构的研究已经成为点集拓扑学中一个有趣的课题。此外,对于多值映射F:X→2Y还可以提出一个连续选择的问题:在什么条件下存在单值连续映射??:X→Y,使得?如果F具有连续选择,那么与F 有关的应用问题几乎都可以归结为单值映射的相应问题。
  
  多值映射的一般理论自然是单值映射相应理论的推广,但前者显然不如后者那么丰富多彩。多值映射理论的重要性在于它对其他数学分支的应用,特别值得一提的,是多值映射的不动点理论对博弈论的完美应用。x∈X称为F:X→2X的不动点,如果x∈F(x)。角谷静夫于1941年首先把关于单值映射的布劳威尔不动点定理推广到多值映射,下面是一个等价形式:
  
  角谷不动点定理 假设K嶅Rn是非空有界闭凸集,F:K→2K是上半连续多值映射,使得对每个p∈K,F(p)都是K的非空闭凸集,于是F有不动点。
  
  命,于是K=Δ×Δ嶅R2n是非空有界闭凸集。考虑双线性函数
  ‖αij‖为实矩阵。对于任何(x,y)∈K,命可以证明,F(x,y)嶅K是非空闭凸集,F:K→2K上半连续,所以据角谷定理知,存在()∈K,使()∈F(),即从而由于相反的不等式是自然成立的,这就证明了矩阵博弈的基本定理:存在∈Δ,使得现在角谷定理已经得到很大的推广,在博弈论、泛函分析等分支都有广泛而重要的应用。
  
  

参考书目
   E.Michael,Topologies on Spaces of Subsets,Tran. Amer.Math. Soc., Vol.71, pp.152~182,1951.
   E.Michael, A Survey of Continuous Selections,Lecture Notes in Math.,Vol.171, Springer-Verlag, Berlin, 1970.
   C.Berge,Topological Spaces, Oliver and Boyd, Edinbergh and London, 1963.
   C. Berge,Théorie Générale des Jeux ╜ n Personnes,Gauthier-Villars, Paris, 1957.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条