说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 二阶非线性泛函微分方程
1)  second order nonlinear functional differential equation
二阶非线性泛函微分方程
1.
This paper discusses a class of second order nonlinear functional differential equations.
利用广义Riccati技巧和平均方法讨论了一类二阶非线性泛函微分方程,得到此类方程所有解振动的新准则。
2)  second order half-linear functional differential equations
二阶半线性泛函微分方程
1.
By means of auxilliary functions and Young inequality technique,new oscillation criteria are established for second order half-linear functional differential equations.
通过引入辅助函数和利用Young不等式技巧,研究二阶半线性泛函微分方程解的振动性,所得的结果是新的,且改进了AgarwalRP等人的一个结果。
3)  nonlinear functional differential equation
非线性泛函微分方程
1.
Boundness of second order nonlinear functional differential equations;
一类二阶非线性泛函微分方程解的有界性
2.
Oscillatory and asymptotic behavior of solutions of the second order nonlinear functional differential equation(a(t)(y (t)σ)+q(t)f(y(τ(t))g(y (t))=0,t≥t0 are considered, where σ is a positive quotient ofeven over odd integers.
研究了二阶非线性泛函微分方程(n(t)(y'(t))σ)+q(t)f(y(τ(t))g(y'(t))=0,t≥t0解的振动性 与渐近性,其中σ是一个偶数与奇数的正商时,所得的结果是全新的。
3.
The general nonlinear functional differential equations with infinite delay was investigated.
研究一般的具有无穷时滞的非线性泛函微分方程。
4)  nonlinear functional differential equations
非线性泛函微分方程
1.
Boundedness of second-order nonlinear functional differential equations;
关于二阶非线性泛函微分方程的有界性
2.
Considers boundedness of solutions of nonlinear functional differential equations,obtains several new sufficient criterion.
对一类非线性泛函微分方程解的有界性进行探讨,得到了几个新的判别法则。
5)  second order functional differential equation
二阶泛函微分方程
6)  Second order functional differential equation with forcing term
二阶强迫泛函微分方程
补充资料:线性泛函


线性泛函
linear finctional

线性泛函【h幽口灿叫比血且;皿肚枷二中”K职0.助],线性型(址〕。甘form),域k上的向童空间L上的 映射f:L~k,使得对所有的x,y‘L,又‘无.有 f(x+y)二f(x)+f(夕),f(又x)“又f(x).线性泛函这概念,作为线性算子(ljll‘lr。伴m的r)概念的重要特殊情况,是线性代数中主要概念之一且在分析中起重要作用. 在L上线性泛函的集合L#上,加法和乘以标量的运算按以下的公式定义 (f+g)(x)=f(x)+g(x),(又f)(x)=又f(x), f,g‘L#,x‘L,又‘k.它们在L#中确定了一个k上的向量空间结构. 线性泛函的核(耽mel ofa五n。叮丘玫‘山nal)是子空间Kerf={x〔L:f(:)二0}.如果f并ooL#(即f(x)等0任k),则K上rf是L中一个超平面.具有同样核的线性泛函是成比例的. 如果王e,二。6A}是L的一组基,则对 ‘一冬‘V“,‘,“,‘任“,f(x)一了吝‘,J(e,,)对应f~{f(x,):,。A}是L#到k人上的一个同构.推论:L同构于L#当且仅当它是有限维的.当转移到L中的一组新基时,元素f(。,)任瓦用与基向量同样的公式变换. 由公式Q、x(f)=f(戈)定义的算子Q::L~(L#)#是一个单射.它是一个同构,当且仅当L是有限维的.这个同构,与L和L#之间的同构不同,是自然的(见函子态射(丘mc仍d目伽甲恤m)). 局部凸空间(饮目lyco~sPace)上,特别是赋范空间上的线性泛函是泛函分析中的重要研究对象.局部凸空间E上每一个连续的(作为拓扑空间上的映射)线性泛函是有界的(见有界算子(botm山沮。详ra-tor)),即对所有有界的M C=E, suP}f(x)}<的. x〔M如果E是一个赋范空间(印nlrd sPace),则其逆也是对的;这两个性质等价于数 ]!fl卜s叩{!f(二)}:J J x Jj(1}的有限性. 局部凸空间E上的连续线性泛函形成E#的子空间E’,称为E的对偶(d斑d)空间.在E‘中,人们考虑不同的拓扑,包括弱的和强的拓扑,它们分别对应于逐点收敛和在有界集上一致收敛.如果E是赋范空间,则E’关于范数“f“是B田.山空间(Rm-ach space),且相应的拓扑与强拓扑一致.单位球仃:}}fIl簇l}按弱拓扑是紧的. 11址犯一B翻.山定理(H滋m一Banachtheo把111)在分析中有重要应用;它的一种表示形式如下:如果”·”是向量空间E上的一个准范数(ple一nonn),且设f0是定义在E的子空间E。上的线性泛函使得对所有的x任E。,}}f。(工){}(}{x}},则f。能够延拓到整个五上,保持线性和给定的界.推论:定义在局部凸空间E的子空间E。上的任何连续线性泛函能延拓成E上的连续线性泛函,而且如果E是赋范空间,则保持范数.因此,对每一个x任E,x笋O,存在一个foE’,使得f(x)笋0, 设E是赋范空间且设E‘和然后的(E’)‘取相应的范数,则算子 及::万~(石’)‘,R:x(f)=f(x)是等距嵌人.如果在此嵌人下E与(E’)‘重合,则E必须是完全的,称为自反的(见自反空间(茂既xivespaCe))·例如,L,Ia,bj和l,(1成p1.对一般的局部凸空间,有类似的自反性概念. 对很多局部凸空间,所有连续线性泛函都有了描述.例如,H口比找空间H的伴随空间是{f:f(x)二(、,x。),对一固定的x。‘H}.C[a,b]的伴随空间是{f:f(二)二了:二(t)d。(t),对一固定的有界变差函数拜(t)}.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条