说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义Ostrovsky方程
1)  Generalized Ostrovsky equation
广义Ostrovsky方程
1.
Cauchy problem for generalized Ostrovsky equation;
广义Ostrovsky方程的Cauchy问题
2)  Ostrovsky equation
Ostrovsky方程
1.
IVP for the Ostrovsky equation in bounded domain;
Ostrovsky方程在有界域上的初值问题
3)  Reduced Ostrovsky equation
Ostrovsky方程
1.
By using the dynamical system theory of ordinary differential equations,the periodic loop solutions of the Reduced Ostrovsky equation are investigated.
用微分方程动力系统理论研究Reduced Ostrovsky方程的周期圈波。
2.
The dynamical system theory of ordinary differential equations is employed for the periodic cusp wave solutions of the reduced Ostrovsky equation.
用微分方程动力系统理论研究了简化Ostrovsky方程的周期尖波解。
4)  generalized equation
广义方程
5)  generalized Boussinesq equation
广义Boussinesq方程
1.
Smooth soliton solutions and different kinds of periodic traveling wave solutions for a generalized Boussinesq equation;
广义Boussinesq方程的光滑孤子解和各种周期行波解
2.
In this paper,the qualitative theory of differential equations and the bifurcation method of dynamical systems are used to investigate the existence of the solitary peakon solution to a generalized Boussinesq equation.
利用微分方程定性理论和动力系统分支方法,对一类广义Boussinesq方程的孤立尖波解的存在性进行了研究。
3.
Then an implicit multi-symplectic scheme equivalent to the multi-symplectic Box scheme was constructed to solve the partial differential equations(PDEs) that were derived from the generalized Boussinesq equation.
广义Boussinesq方程作为一类重要的非线性方程有着许多有趣的性质,基于Hamilton空间体系的多辛理论研究了广义Boussinesq方程的数值解法,构造了一种等价于多辛Box格式的新隐式多辛格式,该格式满足多辛守恒律、局部能量守恒律和局部动量守恒律。
6)  generalized Riccati equation
广义Riccati方程
1.
On Integrability Conditions of Generalized Riccati Equation——To discuss about it with Mr.Zhao Linlong;
关于广义Riccati方程的可积条件——与赵临龙先生商榷
2.
The generalized Riccati equation is introduced in a class of uncertain nonlinearly generalized interconnection systems with saturation input to design the decentralized and generalized robust stabilization controllers relevant to such systems.
采用广义Riccati方程,对一类具有输入饱和的不确定非线性广义交联系统,给出了一种分散广义鲁棒镇定控制器的设计。
3.
This paper considers one kind of generalized Riccati equation.
考虑一类广义Riccati方程,通过函数变换,在所给条件下,将这类方程等价地化为变量分离方程,从而得到了该方程可积的三个充分性判据,并给出方程通解的参数表达形式,扩大了Riccati方程的可解性范围。
补充资料:泊松方程和拉普拉斯方程
      势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
  
  简史  1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
  
  静电场的泊松方程和拉普拉斯方程  若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
  
   ,
  式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
  
   。
  在各分区的公共界面上,V满足边值关系
  
  
  
  
  式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
  
  边界条件和解的唯一性  为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
  
  边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
  
  除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
  
  静磁场的泊松方程和拉普拉斯方程  在SI制中,静磁场满足的方程为
  
  
  式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
  
  
  
  在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
  
  
  选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
  
  
  式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
  
  
  静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
  
  

参考书目
   郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
   J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条