说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 三角位移函数
1)  triangular displacement function
三角位移函数
2)  angular displacement function
角位移函数
3)  Trigonometric function
三角函数
1.
The Trigonometric Function Method for Symmetrical Bending of Cantilever Rectangular Plates;
悬臂矩形板对称弯曲的三角函数解法
2.
Determination of optimal power of data fitting to characteristic curve of trigonometric function;
三角函数曲线数据拟合最佳次数的确定
3.
Generalization of a Definite Integral Formula about Trigonometric Function;
一个三角函数积分公式的推广
4)  Triangle function
三角函数
1.
In this paper,a method of approach to curve & Surface modelling based on triangle function is proposed,which has the principal merits of B-Spline and achieres a C 3 curve.
本文提出了一种基于三角函数的拟合方法 ,它具有B样条的主要优点 ,并达到C3级连续 ,因此 ,这一方法适用于自由曲线曲面的设计。
2.
In this paper,using partially the method of Majorization,we give the supremum and infimum of the triangle function of (k) = ∑sink A - ∑ cosk A(k=3, 5
通过局部地采用优超方法给出了三角函数(k)=∑sinkA-∑coskA(k=3,5)的上下确
3.
This paper discusses an algebraic property of values of rational degrees of triangle functions.
本文讨论了三角函数在有理度数上的取值的代数性质,得出其取值均为代数数。
5)  trigonometric functions
三角函数
1.
Class of quasi-cubic parametric curves based on trigonometric functions;
一组基于三角函数的类三次参数曲线
2.
These ways include the use of simultaneous equations, trigonometric functions and computer aided drawing software.
本文介绍了有直线和圆弧组成的零件轮廓的基点计算的有效方法,这些方法包括联立方程组法、三角函数法 和计算机绘图软件法。
3.
This paper gives a general equivalent infinitesimal of trigonometric functions,and utilizes the equivalentinfinitesimal to make questions become easy.
给出了三角函数的一般形式的等价无穷小,并利用等价无穷小,来简化求极限时繁琐的步骤。
6)  triangular function
三角函数
1.
The measurement of the efficient depth with triangular function in breast cancer isocenter irradiation orientation;
利用三角函数定位法测定乳腺癌放疗的有效治疗深度
2.
This paper presents the methods of triangular function for Fitting arbitrary curves.
本文详细讨论了一种基于三角函数的拟合方法 ,它具有B样条的主要优点 ,达到C3连续 ,而三次B样条只能达到C2 连续。
3.
For each j and σ,n generalised triangular functions and m generalised hyperbolic functions are,respectively,introduced,some properties of them are discussed and some important formulas are given.
相应于每个这样的j和σ,分别引入了n个推广的三角函数和m个推广的双曲函数,然后讨论了它们的性质并给出了有关的重要公式。
补充资料:应力函数和位移函数
      在弹性力学中,为方便求解,常把应力或位移用几个任意的或某种特殊类型的函数表示,这些函数通常叫作应力函数或位移函数。
  
  应力函数  最有名的应力函数是弹性力学平面问题中的艾里应力函数。如果没有体力,平面中的三个应力分量σxx、σyy、τxy满足下列方程:
  
  
   。
   (1)根据方程(1),可将应力分量用一个函数φ(x,y)表示为:
  
  。
   (2)φ便是艾里应力函数。对于均匀和各向同性的物体,φ是一个双调和函数,即它满足下列双调和方程:
  
  
  
  
  ΔΔφ=0,
  
  
  
  
   (3)式中是平面的拉普拉斯算符。引入φ后,平面问题原来的8个未知函数(两个位移分量、三个应变分量和三个应力分量σxx、σyy、τxy就归结为一个函数φ。这对求解具体问题很有好处。
  
  在弹性柱体的扭转问题中,剪应力分量τxz、τyz满足下列平衡方程:
  
  
  
   。
  
  
    (4)据此可将τxz、τyz用一个函数Ψ(x,y)表示为:
  
  
   。
  
  
   (5)Ψ称为普朗特应力函数。对于均匀和各向同性的柱体,Ψ满足下列方程:
  
  
  
  
   ΔΨ=-2Gθ,
  
  
  
   (6)式中G为材料的剪切模量(见材料的力学性能);θ为单位长度的扭转角。
  
  位移函数  在求解弹性力学的空间问题时,也可以用六个应力函数代替原来的六个应力分量,但好处不多。所以,一般多采用各种位移函数。对于均匀和各向同性弹性体,位移分量u1、u2、u3满足下列平衡方程:
  
   式中是空间中的拉普拉斯算符;ν为材料的泊松比;G为剪切模量;┃i为体力分量。方程(7)的解可以表达成多种形式。一种形式为: 式中ψ1、ψ2、ψ3、嫓四个函数满足下列方程:
  
   。 (9)函数ψ1、ψ2、ψ3、嫓称为布森涅斯克-帕普科维奇-纽勃位移函数。 弹性力学中许多空间问题的解都是从公式(8)推导出来的。
  
  方程(7)还有另一种形式的解,即
  
   式中Fi满足下列方程:
  
  
  
   。
  
  
  (11)函数F1、F2、F3称为布森涅斯克-索米利亚纳-伽辽金位移函数。对于回转体的轴对称问题,公式(10)可作许多简化。取对称轴为z轴(x3轴),记r为所考虑点到z轴的距离,并记位移在r、z轴上的投影分别为u、ω。若┃1=┃2=0,可取F1=F2=0,F3=F(r,z)。这样,由公式(10)可得到:
  
    ,
    (12)式中,即柱坐标中的拉普拉斯算符;F满足下列方程:
  
  
    
    。
  
  
    (13)
   公式(12)中的函数F称为乐甫位移函数。 在求解轴对称问题时,经常利用公式(12)。
  
  在┃1=┃2=0的情况下,即使不是轴对称问题,方程(7)的解也可用一组位移函数F、┃表示如下:
  
  
    式中F、┃满足下列方程:
  
  
  
   , Δ┃=0。
   (15)这组位移函数特别适用于求解无限体、半无限体和厚板等问题。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条