说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 一阶状态向量常微分方程
1)  1-order ordinary differential matrix equation for the state vector
一阶状态向量常微分方程
2)  first order ordinary differential equation
一阶常微分方程
1.
The solution of first order ordinary differential equation with the integral factor of a product form
一阶常微分方程具有一种乘积形式积分因子的求解
2.
Existence and application of two integrating factors on first order ordinary differential equation
探讨一阶常微分方程两种积分因子的存在性及其应用
3.
Essentially,the opposite reaction kinetics process is a process of resolving the first order ordinary differential equation.
对峙反应动力学过程,其实质是一个求解一阶常微分方程的过程。
3)  first-order ordinary differential equation system
一阶常微分方程组
1.
Effective solution method for the first-order ordinary differential equation system;
一阶常微分方程组的一个有效解法
4)  linear ordinary differential equation of the first order
一阶线性常微分方程
1.
Through preliminary analysis, thorough study and elaborate deduction, the author elucidated the necessity of replacing constant C with function c(x) in solving linear ordinary differential equation of the first order.
文章通过初步说明、深入研究、精确推导三个层次 ,说明了一阶线性常微分方程的常数变易法中把任意常数 C变易成函数 u( x)的内在必然
5)  non-continuous ordinary differential equation of the first order
一阶非连续常微分方程
1.
Solving process of monotonic iteration to the initial value question of non-continuous ordinary differential equation of the first order is discussed, the known results are generalized.
讨论一阶非连续常微分方程初值问题的单调迭代求解,推广了已知结果。
6)  First order differential of state variables
状态变量一阶微分
补充资料:二阶线性常微分方程


二阶线性常微分方程
f the second order linear ordinary differential equation

[译注1定义万柱人妙份丫,.’‘二阶线性常微分方程〔h幽田优由圈叮J价魏‘闭闪娜仲.of加涨泊.记份山r;月姗e盛肋e脚例姆PeH.田.油.oe冲a-,~咖poro nop.那口] 形如 x“+P(r)x’+住(t)x=r(t)(l)的方程,其中x(t)是未知函数,夕(t),叼(r),r(t)是给定的在某个区间(a,b)内连续的函数.对于任何实数x。,x。以及r。‘(a,b),存在(1)的定义于所有作(a,b)的唯一解x(O。满足初始条件x(t。)=x。,x‘(t。)=x 6.如果义,(t)和xZ(t)是对应的齐次方程(homo-罗neouS equation) x‘’+夕(t)x‘+叮(t)x=o(2)的线性无关的解,而x。(t)是非齐次方程(l)的一个特解,则(l)的通解(罗nenllsolution)由公式 X(t)=x。(t)+C .xt(t)+CZxZ(t)给出,其中C,,CZ是任意常数.如果已知(2)的一个非零解x:(t),则此方程的另一个与x:(t)线性无关的解由公式 。 exp(一f,(:)、:) ‘2(亡)一‘1(‘)Jee一一及万~石5一一一d亡给出.如果已知(2)的两个线性无关的解x」(t)和x:(t),则可用常数变易法(vanat10n of constants)求出(1)的一个特解x。(t). 在研究(2)时,把它变换为其他类型的方程起着重要作用.例如,通过变量替换x二x;,x‘=xZ,方程(2)就转化为一阶线性方程构成的正规方程组;作未知函数替换 二一,exnr一令f,(。)己:、, ‘一丫\ZJ“一‘一/’方程(2)就转化为方程y”+R(t)y二0,其中 ;(。)一冬,,(:)一粤,,(。)+。(亡) 2上、一户4称为方程(2)的不变量(m珑川ant ofan以luation);作变量替换x’=yx,方程(2)就转化为Ria习ti方程(Riccati明L以tion) 夕’+夕’+夕(r)夕+g(t)=0.乘以 ,(:)一exn(丁,(:)d:)后,方程(2)就采取自伴形式 (P(r)x’)‘十P(t)q(t)x=0. 方程(2)只在少数几种情形才能由求积来积分;不可积方程(2)的一些最重要的特别类型则产生各种特殊函数(spec妞丘mCtion). 关于零点分隔的Stunn定理(Stujnlt坛”rern)二如果x:(t),xZ(t)是(2)的线性无关的解,t,,tZ(r,叮,(r),则有(比较定理(eomp此on th(幻~)):如果t,,tZ(t,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条