说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 有限夹心半群
1)  finite sandwich semigroup
有限夹心半群
1.
Regularities and Green s relations for finite sandwich semigroup T(X,Y;θ);
有限夹心半群T(X,Y;θ)的正则性与Green关系
2)  sandwich semigroup
夹心半群
1.
Then T(XE,YF;θ) forms a seminroup under the operation which is called sandwich semigroup with the sandwich function θ.
"下构成一个半群,称为保持等价关系EF的夹心半群,θ称为夹心映射。
2.
The congruence lattice C(TE(X,Y,θ)) on sandwich semigroups TE(X,Y,θ) determined by any nontrivial equivalence E on Y is discussed.
对于Y上的任意非平凡等价关系E,讨论了由E确定的夹心半群TE(X,Y,θ)的同余格C(TE(X,Y,θ)),证明了当θ是单射时,C(TE(X,Y,θ))可分解为3个不相交的完全子格[C(δ),Cα(δ)],[C(E),Cα(E)]和[C(ω),Cα(ω)]。
3.
The sandwich semigroup BG(R) on R is discussed.
设BG是布尔群代数,R是BG中的非零元素,在BG中讨论关于R的夹心半群 BG(R)、主要给出BG(R)中的元是幂等元的充要条件、幂等元的结构定理和求幂等元的一 种算法,并把结果应用到布尔矩阵中。
3)  finite semigroups
有限半群
1.
Speciality of idempotent element on finite semigroups;
有限半群周期元和幂等元的特征
4)  finie inverse semigroup
有限逆半群
5)  finite wide semigroup
有限宽半群
6)  Order-preserving Sandwich Semigroup
保序夹心半群
补充资料:局部有限半群


局部有限半群
locally finite semi-group

局部有限半群【】侧习lly俪妞肥垃一gnx甲;~a几研。劝-:e,ua,。o二yrPynna」 每一有限生成子半群皆有限的半群.局部有限半群是一个周期半群‘periodic sernl一gro叩)(亦称扭半群).反之未必成立:甚至存在不是局部有限的扭群(见,川画山问题(B~汝prob七m)).早在群的BllJI书ide问题解决之前,在诣零半群类(见诣零半群(祖~·g旧uP))等一些与群相差甚远的半群类中就构造出了非局部有限的扭半群的例子.例如,一个具有由护=O给出的簇中的两个生成元的自由半群,以及具有由xZ=O给出的簇中的三个生成元的自由半群都是这样的半群.进一步地,对于某些类型的半群,周期性和局部有限性条件是等价的.一个平凡的例子是交换半群.局部有限半群的一个带(见半群的带(bandof~一groups))本身也是一个局部有限半群(「1)]进一步地,一个具有局部有限群分解的半群是一个局部有限半群.特别地,幂等半群(idem Potents,~一gro叩of)是局部有限半群({71).如果n是这样一个整数,使得任意满足丫=1的群都是局部有限的,则任意满足丫+’=x的半群都是局部有限的(「6」).具有局部有限半群分解的半群未必是局部有限半群(【31),但如果p是半群S上的一个同余关系,使得商半群S/p和每个成为子半群的p类都是局部有限的,则S是一个局部有限半群(见「4],〔5」);特别地,一个局部有限半群被另一个局部有限半群的理想扩张仍是一个局部有限半群.如果S是体上矩阵的一个周期半群,且其所有的子群都是局部有限的,则S是局部有限的(见181).这蕴涵着任意域上矩阵的周期半群是局部有限的. 当S为一个域上矩阵的周期可逆半群时,如果其所有元素的周期(见单演半群(Inonog泊Ic senll一grouP))一致有界且不能被域的特征整除,则S是有限的(汇2」).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条