1) ε-strict efficient solutions
ε严有效解
1.
In locally-convex topological vector spaces, ε-strict efficient points and ε-strict efficient solutions are introduced.
在局部凸拓扑向量空间中引入了ε严有效点、ε严有效解的概念。
2) ε-strict efficient points
ε严有效点
1.
In locally-convex topological vector spaces, ε-strict efficient points and ε-strict efficient solutions are introduced.
在局部凸拓扑向量空间中引入了ε严有效点、ε严有效解的概念。
3) ε-strict efficiency
ε-严有效点
1.
In this paper, we introduce and research systematically ε- strict efficiency and ε- strong efficiency of vector optimization with set-valued maps in locally convex topological spaces.
首先,得到了凸集A的ε-严有效点集和ε-强有效点集的标量化特征,连通性及它们在ε-有效点集中的稠密性结果。
4) ε-efficient solution
ε-有效解
1.
In this paper,we provide a necessary condition for ε-efficient solutions of Multiobjective Programming(MOP),we mainly study six well-know scalarization methods for the MOP and establish the corresponding relationships between ε-efficient solutions and ε-optimal solutions when solving(MOP) and scalarized problem(SOP
考虑多目标优化问题中ε-有效解存在的必要条件。
5) ε-super efficient solution
ε-超有效解
1.
In locally convex linear topological spaces,the ε-super efficient solution for vector optimization with set-valued maps was introduced.
通过在局部凸拓扑线性空间中引进集值映射向量优化问题的ε-超有效解,在集值映射为内部锥类凸的假设下,利用凸集分离定理建立了关于ε-超有效解的标量化定理,并利用择一定理得到ε-Lagrange乘子定理。
2.
In this paper,we study the connectedness of ε-super efficient solution set of vector optimization set-value mapping in normed linear spaces.
研究了赋范线性空间中集值向量优化问题ε-超有效解集的连通性,并证明了目标映射为锥拟凸的向量优化问题的ε-超有效解集是连通的。
3.
This paper establishes and proves the saddle points and duality theorems for ε-super efficient solution of vector optimization with set-valued maps, under the assumption that the set-valued maps is nearly generalized cone-subconvexlike, by utilizing the scalarization and Lagrange multiplier theorem for ε-super efficient solution.
在集值映射是近似广义锥次似凸的假设下,利用ε-超有效解的标量化和Lagrange乘子定理,建立和证明了关于ε-超有效解的鞍点和对偶定理。
6) ε-weak efficient solution
ε弱有效解
补充资料:楞严经会解
【楞严经会解】
(书名)二十卷,元释惟则会解。其自序曰:“余见长水璇师,孤山圆师,泐潭月师,温陵环师之说。又阅吴兴岳师之集。并得兴福,悫资,中沇,真际,节槜李敏诸师之意,无不大同。惟所见或各从一长,乃不能不小异。(中略)今余会诸家要解以通大途,异不公乎众者节之,异而互通者互存之,互为激扬者,审其的据而节取之。间有隐略乖隔处,则又附己意,自为补注。若合殊流同归于海,故谓之会解。”
(书名)二十卷,元释惟则会解。其自序曰:“余见长水璇师,孤山圆师,泐潭月师,温陵环师之说。又阅吴兴岳师之集。并得兴福,悫资,中沇,真际,节槜李敏诸师之意,无不大同。惟所见或各从一长,乃不能不小异。(中略)今余会诸家要解以通大途,异不公乎众者节之,异而互通者互存之,互为激扬者,审其的据而节取之。间有隐略乖隔处,则又附己意,自为补注。若合殊流同归于海,故谓之会解。”
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条