说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Nonlinear Klein-Gordon方程
1)  nonlinear klein-goedon equation
Nonlinear Klein-Gordon方程
2)  Klein-Gordon equation
Klein-Gordon方程
1.
Bound states of the Klein-Gordon equation and Dirac equation with the Manning-Rosen scalar and vector potentials;
Manning-Rosen标量势与矢量势的Klein-Gordon方程和Dirac方程的束缚态
2.
Bound states solutions of the Klein-Gordon equation with Hartmann potential;
Hartmann势的Klein-Gordon方程的束缚态解
3.
Bound states of Klein-Gordon equation for generalized Hartmann potentials;
一般Hartmann势Klein-Gordon方程的束缚态
3)  Klein-Gordon equations
Klein-Gordon方程
1.
Various traveling wave solutions with double parameters,which are expressed by the hyperbolic functions and trigeonometic functions,for a class of nonlinear Klein-Gordon equations are found out by using the projective Riccati equptions and homogenous balance principle.
借助投影Riccati方程组及齐次平衡原则,求出了一类非线性Klein-Gordon方程的含有双参数的双曲函数和三角函数表示的各种行波解。
4)  Klein-Gordon-Zakharov equations
Klein-Gordon-Zakharov方程
1.
In this paper,by using the recently proposed F-expansion method and the software of Mathematica,the periodic wave solutions expressed by Jacobi elliptic functions to the Klein-Gordon-Zakharov in three dimensional space are derived,and in the limit case,the solitary wave solutions and other type solutions for Klein-Gordon-Zakharov equations are obtained.
本文运用最近提出的F-展开法,应用数学计算软件Mathematica,得到三维空间中的Klein-Gordon-Zakharov方程由Jacobi椭圆函数表示的周期解,并且在极限情况下,可以推得其孤波解以及其它形式的新解。
2.
In this paper,by using a new class of Riccati equations and the extended tanh-fuction method,exact solutions of the Klein-Gordon-Zakharov equations in three space dimensions are constructed.
运用改进的tanh函数法,利用一种新的Riccati方程得到三维空间中Klein-Gordon-Zakharov方程的精确解。
5)  Klein-Gordon-Schrodinger equations
Klein-Gordon-Schrodinger方程
6)  Klein Gordon systems
Klein-Gordon方程组
1.
The blow up result of the following nonlinear Klein Gordon systems with positive initial energyu tt +u t -Δu+u-|v| ρ+2 |u| ρu=0 v tt +v t -Δv+v-|u| ρ+2 |v| ρv=0is studied.
研究如下具阻尼项的 Klein-Gordon方程组utt+ut-Δu +u -|v|ρ+2 |u|ρu =0vtt+vt-Δv +v -|u|ρ+2 |v|ρv =0 具有正初始能量的解的爆破性 。
补充资料:nonlinear dielectric
分子式:
CAS号:

性质:在一定电场强度范围内,极化强度随电场强度的变化呈非线性关系,因而是介电常数随电场而改变的电介质材料。一般铁电体都是非线性介质材料。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条