说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 黎曼积分方法
1)  Riemann integration method
黎曼积分方法
2)  Riemann Integral
黎曼积分
1.
The Discrete Definition of "ε-N" of Riemann Integral;
黎曼积分的离散型“ε-N”定义
2.
Advantage of Lebesgue over Riemann integral;
勒贝格积分相对于黎曼积分的优越性
3.
Teaching of Mathematics Short but Reasonable Reasoning for the Riemann Integral;
关于黎曼积分定义教学的新探索
3)  Riemann method
黎曼方法
1.
A rigorous coupled wave theory for the Bragg diffraction of a Gaussian beam in the uniaxial crystal is derived and a group of rigorous coupled wave equations and diffraction efficiency formula are obtained in terms of the proper coordinate transformation and Riemann method.
利用适当的坐标变换和黎曼方法建立了高斯光束在单轴晶体中布拉格衍射的严格的耦合波理论 ,获得了一组严格的耦合波方程和衍射效率计算公式 ,讨论了衍射效率随折射率调制量的关系以及波长选择性和角度选择性 ,同时分析了衍射效率对再现光宽度的要求。
4)  Generalized Riemann integrable
广义黎曼积分
5)  improper Riemann integra
非正常黎曼积分
6)  Fuzzy Riemann Integral
模糊黎曼积分
补充资料:黎曼-斯蒂尔杰斯积分
      数学中常用的一种积分。它是黎曼积分的推广。通常利用黎曼积分可以计算几何形体的面积、体积,物理和力学中的功、能,物体的重心和转动惯量以及更一般的矩等等。例如,设[α, b]上分布了一些有质量的物质(或电荷)。如果分布是非均匀的,但有密度,并且密度函数ρ(x)在[α,b]上是连续的或黎曼可积的,那么物质(或电荷)对[α,b]外某点c的矩(或电位)可用形式为的黎曼积分来计算。如果计算n次矩,??(x)便是(x-c)n;如果计算位能,??(x)便是。然而,当分布根本没有密度函数时,黎曼积分对上述问题就失效了。因此,数学上有必要引入下面更广泛的积分概念。
  
  设??(x),g(x)是[α,b]上两个函数(可以是复值函数)。对[α,b]上任何分点组,作和式,式中,记,如果存在S,使得,则称??(x)关于g(x)在[α,b]上是黎曼-斯蒂尔杰斯可积的,并称S为??(x)关于g(x)的黎曼-斯蒂尔杰斯积分(简称R-S积分)。通常记S为。特别,当g(x)=x+с(с是常数)时,上面的积分S 就是??(x)的黎曼积分。又如果g(x)表示[α,x]上总质量或总电荷量,那么g(xi)-g(xi-1)便是(xi-1,xi](当xi-1=α时,应是[xi-1,xi])上总质量或总电荷量。因此,上述新积分就能用来计算非均匀分布,特别是密度函数不存在时非均匀分布关于某点с的矩或电位。R-S积分是建立一般的曲线积分的基础。
  
  黎曼-斯蒂尔杰斯积分有下面常用性质。
  
  ① 如果??(x)、g(x)有一个公共的不连续点,则积分不存在。
  
  ② 线性性质。设α,β是任何两个复数,如果??(x)关于g1(x)和g2(x)可积,则如果??1(x)、??2(x)关于g(x)都可积,则
  
  ③ 区间可加性。??(x)关于g(x)在[α,b]上可积,当且仅当对任何с∈[α,b],??(x)关于g(x)分别在[α,с],[с,b]上都可积,此时。
  
  ④ 分部积分公式。如果??(x)关于g(x)可积,则g(x)关于??(x)也必可积,并且。
  
  ⑤ 如果??(x)是[α,b]上连续函数,g(x)是[α,b]上有界变差函数,则??(x)关于g(x)可积。
  
  ⑥ 设??(x)是[α,b]上有界函数,g(x)是[α,b]上的有界变差函数,ωi表示 ??(x)在[xi-1,xi]上的振幅,即
  
  
  ,则??(x)关于g(x)可积当且仅当对任何给定的 η>0,和对任何分点组,式中
    。
  
  ⑦ M-l不等式。如果??(x)是有界函数,g(x)是有界变差函数,并且??(x)关于g(x)可积,则
  
  
   ,式中是g的全变差(见有界变差函数)。
  
  ⑧ 如果 g(x)是[α,b]上有界变差函数,{??n(x)}是[α,b]上关于g(x)可积的一列有界函数,并且一致收敛于??(x),则??(x)必关于g(x)可积,并且。
  
  ⑨ 设??(x)是[α,b]上连续函数,{gn(x)}是[α,b]上一列有界变差函数,且处处收敛于函数g(x),又设存在常数K,使,那么??(x)关于g(x)可积,且。
  
  随着黎曼积分发展成勒贝格积分,黎曼-斯蒂尔杰斯积分也发展成勒贝格-斯蒂尔杰斯积分(见勒贝格积分)。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条