说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 主缆振动形态
1)  main cable mode shape
主缆振动形态
2)  principal mode of vibration
主振动形式
3)  transient main cables
暂态主缆
1.
Galloping analysis for the transient main cables of long-span suspension bridges during construction
大跨径悬索桥施工期暂态主缆驰振分析
4)  cable shape
主缆线形
1.
We introduce the zero method principle which can calculate initial stress while gravity act and the iterative method which can determine the cable shape.
介绍了按照零位移原则确定重力作用下主缆的初始应力状态的方法及确定主缆线形的迭代算法。
2.
In order to calculate the cable shape of suspension bridge with spatial cables at bridge completion stage and cable finish stage,a 3-dimensional analysis model is used and an numerical-analytical method is proposed,the effect of saddle and coupling between cable and hanger are also considered.
用空间分析模型 ,考虑了主缆和吊索的耦合效应和鞍座的影响 ,采用数值解析法对空间缆索悬索桥成桥状态和空缆状态主缆线形进行分析 ,然后通过算例验证了所提方法的正确性 。
3.
Using numerical-analytical method,considering the influence of saddle,the calculation principles and procedures for cable Linetype of finished bridge state of cable-stayed suspension bridge were introduced,and a new method for calculation of cable shape and saddle predisplacement of cable finished stage was given.
采用数值解析法,考虑索鞍的影响,介绍了吊拉组合体系桥成桥状态主缆线形的计算原理和步骤,给出了空缆状态线形和索鞍预偏量计算的一种新方法。
5)  cable curve
主缆线形
1.
Segmental catenary method of calculating the cable curve of suspension bridge;
悬索桥成桥主缆线形计算的分段悬链线法
2.
It consists of two parts, calculation of cable curve for suspension bridge and geometric nonlinear analysis of bridge structure.
全文主要包括两大部分:悬索桥主缆线形计算部分和桥梁结构几何非线性分析部分。
3.
According to the strong geometric nonlinear character of long-span suspension bridges, this thesis has explored the calculation of cable curve for suspension bridge and geometric nonlinear analysis theory of suspension bridge.
针对大跨度悬索桥所具有的强几何非线性,本文探索了悬索桥主缆线形计算理论和结构几何非线性有限元分析理论,并提出了一些新的计算方法。
6)  shape-finding
主缆找形
补充资料:点振子振动和点电极振子振动
分子式:
CAS号:

性质:又称点振子振动和点电极振子振动。振动能量绝大部分集中在点电极范围内,形成“能量封闭”的振动模式。振子电极面远小于压电陶瓷片的总面积,且与厚度有适宜的匹配关系。在交变电场作用下,沿厚度方向产生振动,其振幅随着至电极中心距离的增加,呈指数式衰减。谐振频率与压电陶瓷片的厚度有关。为提高频率通常将压电陶瓷片磨得很薄,有时考虑到压电陶瓷自身强度太低,可用特制的陶瓷片作垫片来防止压电陶瓷片损坏。常用于高频场合。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条