1) linear-complex singularity
线性丛奇异
2) linear singularity
线奇异性
1.
A method based on linear singularity analysis of image is presented.
针对基于图像像素点分析的边缘提取方法存在无法同时满足高抑噪性、连续性、定位性等问题,本文提出了方向Beamle变换(DBT)方法,在定义图像线奇异性的理论基础上,利用DBT对图像进行线奇异性分析,依据Beamlet变换具有的线段提取能力,将图像边缘检测问题转化为方向Beamlet变换系数矩阵中奇异点的检测问题,以降低噪声点对边缘检测结果的影响。
4) semilinear singular
奇异半线性
1.
In this paper,we study the Cauchy problem of semilinear singular reaction-diffusion system as followu_t-(1/t)Δu=v~p t>ε>0,x∈R~nv_t-(1/t)Δv=u~p t>ε>0,x∈R~n(1)(lim)t→ε u(t,x)=u_0(x) x∈R~n(lim)t→ε v(t,x)=v_0(x) x∈R~n(2)Where p>1,u_0(x),v_0(x)∈L~∞(R~n),u_0(x)≥0,v_0(x)≥0,u_0(x)0,v_0(x)0.
研究了如下奇异半线性反应扩散方程组Cauchy问题:ut-(1/t)Δu=vp t>ε>0,x∈Rnvt-(1/t)Δv=up t>ε>0,x∈Rn(1)limt→εu(t,x)=u0(x)x∈Rnlimt→εv(t,x)=v0(x)x∈Rn(2)其中,p>1,u0(x),v0(x)∈L∞(Rn),u0(x)≥0,v0(x)≥0,且u0(x),v0(x)不恒为零。
5) singular nonlinear
奇异非线性
1.
The present paper deals with the existence of the positive solution of the singular nonlinear boundary value problem:(g(u′))′=-K(x)f(u), 0<t<1; u(0)=0, u′(1)=cwhere g(s)=|s| p-2 s, p>1, c is a non negative real numbers, f(u) is non negative, right continuous, nonincreasing in (0,+∞).
讨论一维 p Laplacian 奇异非线性边值问题(g(u′))′= - K (t)f (u), 0 < t < 1,u(0) = 0, u′(1) = c正解的存在唯一性, 其中 g (s)= |s|p- 2s, p > 1, f (u )在(0,+ ∞)上是非负、非增的右连续函数。
2.
The shooting method is used to infer the existence and uniqueness of the positive solution to the singular nonlinear boundary value for n order ordinary differential equations u (n) (t)+f(t,u)=0, t∈(0,1), u (k) (0)=0, 0≤k≤n-2, u′(1)=c, where c is a non negative real number; f(t,u) is non negative and continuous on (0,1) ×(0,∞) and nonincreasing in u .
利用打靶法讨论奇异非线性n阶常微分方程边值问题u(n)(t)+f(t,u)=0,t∈(0,1),u(k)(0)=0,0≤k≤n-2,u′(1)=c正解的存在唯一性,其中c是非负实数,函数f(t,u)在(0,1)×(0,∞)上非负连续,并且关于u单调不
6) cosingular complexes
共奇线丛系
补充资料:丛丛
1.形容人或物聚集的样子。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条