1)  super plastic deformation
超塑
1.
The paper studies elementally the titanium super plastic deformation at room temperature, including the research work on the rapid compression test,properties,micro-structures etc.
对钛合金室温超塑性行为进行了一些探索研究,其中包括在室温条件下在0。
2)  super plasticity
超塑性
1.
In this paper, the super plasticity of magnesium alloy has been fully represented, and the preparation methods of magnesium alloy with super plasticity in the future have been also introduced.
本文就镁合金的超塑性进行了全面的阐述,同时也对将来轻质超塑性镁合金的制备方法进行了介绍。
3)  superplasticizer
超塑化剂
1.
Dispersion of polycarboxylate superplasticizer containing polyether side chain;
含聚醚侧链共聚羧酸类超塑化剂的分散作用
2.
Development of the amino sulfonic acid based superplasticizer;
氨基磺酸盐系超塑化剂研制
3.
Synthesis of amphoteric carboxylic acid-based graft copolymer superplasticizer for concrete and its property evaluation;
两性羧酸类接枝共聚物混凝土超塑化剂的制备与性能评价
4)  superplastic
超塑性
1.
Prediction of Superplastic Properties of Lead Brass Based on BP Neural Network;
基于BP神经网络的铅黄铜超塑性能预测
2.
The Research on Superplastic of Ultrafine Grained Ultrahigh-carbon Steels;
超细晶超高碳钢的超塑性研究
3.
The Development of Superplastic Diffusion Bonding in Ceramics;
陶瓷超塑性扩散连接的研究进展
5)  superplastic deformation
超塑变形
1.
Effect of holding time on high temperature microstructures of hydrogenation TC4 alloy before superplastic deformation;
保温时间对置氢钛合金超塑变形组织的影响
2.
This paper studied the superplastic deformation behavior of enhanced titanium-base composite material in-si- tu autogenesis TiB and TiC under conditions of temperature varied in the range of 920~1080℃ and initial strain rate was 2× 10~(-2)s~(-1)~10~(-4)s~(-1).
研究了温度为920~1080℃、初始应变速率为2×10~(-2)s~(-1)~10~(-4)s~(-1)条件下的原位自生 TiB 和 TiC 增强钛基复合材料的超塑变形行为。
3.
Optical microscope and scanning electronic microscope ( SEM) were employed to observe the microstructure evolution and fracture behavior in superplastic deformation of AZ31 Mg alloy and the values of deformation activation energy at various.
在300-400℃的超塑变形温度范围内,AZ31镁合金超塑变形的主要机制是由晶界扩散控制的晶界滑移,而变形温度和应变速率对AZ31镁合金断裂行为的影响主要体现在变形机制从晶内滑移到晶界滑移的转变。
6)  superplasticity
超塑性
1.
Study on Superplasticity of As-extruded AZ31B Magnesium Alloy;
挤压态AZ31B镁合金的超塑性研究
2.
Research progress on superplasticity of bulk amorphous alloys;
大块非晶合金的超塑性研究进展
3.
Application of Superplasticity of Pneumatic Forming in Production;
超塑性气压成形技术在生产中的应用
参考词条
补充资料:超塑成形
      利用某些金属在特定条件下所呈现的超塑性进行锻压成形的方法。金属的塑性通常用延伸率表示,其值一般小于40%。但在特定的条件下金属呈超塑性,其特征是:延伸率可提高几十到几百倍,最高可达2000%以上;流动应力降低为原来的几十分之一;不出现加工硬化。
  
  金属获得超塑性的主要条件是:具有等轴、细微的晶粒结构、缓慢的应变速率和恒定的变形温度。这种在恒定温度条件下呈现的超塑性称为恒温超塑性。某些金属在相变温度下反复加热和冷却时,则可能出现相变超塑性。
  
  20世纪20~30年代,人们就已发现金属的超塑性现象。超塑性原理从60年代开始应用于工业生产。工业上用于超塑性加工的金属主要有锌合金、铝合金、铜合金和钛合金,部分钢也可进行超塑性加工(见表)。
  
  常用的超塑成形方法,有超塑气压成形和超塑挤压(或模锻)成形。前者用于板料(图2),通入压力为1~2兆帕的氮气或空气,迫使板坯胀形,紧贴凹模而制成工件。后者用于棒料,与传统的热挤压或热模锻相似。成形的坯料需要先经超塑组织处理。成形时,模具和坯料都必须保持在超塑的恒定温度下,所以模具上要有加热装置。成形速度必须缓慢,一般用油压机准确控制。此外,还可利用超塑状态下金属的固相扩散能力实现扩散焊。
  
  超塑成形已用在电子、仪器仪表、航空、宇航、模具制造和工艺品制造等部门。这种工艺对于高比强度、难变形的钛合金成形尤有重要意义,已用于制造叶片、涡轮盘 (图3)、高压球形容器。采用超塑成形可以节约材料20%以上,节约能源30%以上,节约设备投资50%以上,并可减少工序、缩短生产周期。超塑成形工艺一次性投资较少,在小批量生产时,比传统成形工艺有利。但在大批量生产时,因对金属组织有特殊要求,而且生产率低,应用尚不广泛。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。