1) ε-effective set
ε-有效集
1.
In this paper,a interior-point method is presented to deal with nonlinearinequality constrained problem by using the idea of ε-effective set.
利用ε-有效集策略,建立了一个处理非线性不等式约束优化问题的内点算法。
2) ε-weak efficient set
ε-弱有效集
1.
In this paper, we study the topological properties of ε-weak efficient set in vector optimization of set-valued maps.
本文研究集值向量优化问题ε-弱有效集的拓扑性质,证明了ε-弱有效解集的存在性、闭性、紧性和连通性。
3) ε-efficient set
ε-真有效解集
1.
In this paper, we study the topological properties of ε-efficient set in vector optimization of set-valued maps.
该文研究集值向量优化问题ε-真有效解集的拓扑性质 ,证明了ε-真有效解集的闭性、紧性和连通性。
4) ε-efficient solution
ε-有效解
1.
In this paper,we provide a necessary condition for ε-efficient solutions of Multiobjective Programming(MOP),we mainly study six well-know scalarization methods for the MOP and establish the corresponding relationships between ε-efficient solutions and ε-optimal solutions when solving(MOP) and scalarized problem(SOP
考虑多目标优化问题中ε-有效解存在的必要条件。
5) ε-efficient point
ε-有效点
6) ε-super efficient solution
ε-超有效解
1.
In locally convex linear topological spaces,the ε-super efficient solution for vector optimization with set-valued maps was introduced.
通过在局部凸拓扑线性空间中引进集值映射向量优化问题的ε-超有效解,在集值映射为内部锥类凸的假设下,利用凸集分离定理建立了关于ε-超有效解的标量化定理,并利用择一定理得到ε-Lagrange乘子定理。
2.
In this paper,we study the connectedness of ε-super efficient solution set of vector optimization set-value mapping in normed linear spaces.
研究了赋范线性空间中集值向量优化问题ε-超有效解集的连通性,并证明了目标映射为锥拟凸的向量优化问题的ε-超有效解集是连通的。
3.
This paper establishes and proves the saddle points and duality theorems for ε-super efficient solution of vector optimization with set-valued maps, under the assumption that the set-valued maps is nearly generalized cone-subconvexlike, by utilizing the scalarization and Lagrange multiplier theorem for ε-super efficient solution.
在集值映射是近似广义锥次似凸的假设下,利用ε-超有效解的标量化和Lagrange乘子定理,建立和证明了关于ε-超有效解的鞍点和对偶定理。
补充资料:〖ZK(〗各证集说诸方备用并五脏六腑集论合抄〖ZK)〗
〖ZK(〗各证集说诸方备用并五脏六腑集论合抄〖ZK)〗
内科著作。1卷。原题清叶桂(天士)家传,撰年不详。此书汇集内科杂证70余种,方剂近200首。每证各为一论,阐明疾病性质、病因、症状、治则及方药。论后每引经说,概括病机。所列方药服法亦皆详备。又列“五脏六腑论”一章,引用《内经》、《难经》,逐一论述五脏六腑之形象、部位、表里关系、病症及治法。本书内容多录自《临证指南》,恐系后人伪托叶氏之作。现存抄本
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条