说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 反位效应
1)  trails-effect
反位效应
2)  trans effect of ligand
配位体反位效应
3)  cis-trans position effect
顺反位置效应
4)  Responds the effect
反应效应
5)  intergenic cis-trans position effect
基因 间顺反位置效应
6)  reaction efficiency
反应效率
1.
This paper discussed the effect of cationic agent and catalyst dosages, reaction temperatureand reaction time on the degree of substitution and reaction efficiency of cationic starch prepared by dry process.
讨论了干法制备阳离子淀粉工艺中阳离子试剂、催化剂用量及反应温度、反应时间等因素对取代度和反应效率的影响。
2.
The effect of different reaction conditions on the substituted degree(DS) and reaction efficiency of starch phosphate monoester were also studied in this paper.
采用磷酸与焦磷酸钠按一定配比混合作为酯化试剂,尿素为催化剂干法制备高取代度磷酸单酯淀粉,并研究不同反应条件对磷酸单酯淀粉取代度(DS)及反应效率的影响。
3.
7 g,the optimized reaction efficiency was obtained;under the conditions that sodium/ amine molar ratios 1.
采用单因素实验、正交实验确定了获得高反应效率的最优条件为:催化剂与醚化剂的摩尔比1。
补充资料:反位效应
      在几何图形有对称中心的金属配合物中,配体有使其反位的另一配体不稳定的效应。例如,二价铂配合物为平面四边构型,两条对角线的每对配体互为反位。
  
  简史  A.韦尔纳在研究了佩罗内反应和耶尔根森反应以后,曾指出在二价铂配合物中,其反位配位体间存在着反位消除作用。1926年И.И.切尼亚耶夫总结了这类反位消除作用的大量事实,提出反位效应原理。
  
  现象  ①佩罗内反应:
  
  
  ②耶尔根森反应:
  
  
  由①和②两反应可见,在某些配合物内界的取代反应中,取代反应常常发生在反位效应较大的配体的反位位置上。如Cl-的反位效应大于NH3,所以反应①的NH3取代在Cl-的反位,生成顺式配合物;反应②也是如此,但只生成反式配合物。
  
  反位效应不仅在Pt()配合物中存在,而且在Ni()、Pd(Ⅱ)、Au(Ⅲ)、Rh(Ⅰ)和Ir(Ⅰ)等正方平面形的配合物以及Pt(Ⅳ)、Co(Ⅲ)、Fe(Ⅲ)、Rh(Ⅲ)、Ir(Ⅲ)、Pb(Ⅳ)和Mn(Ⅱ)等八面体形配合物中均存在(罗马数表示金属的氧化数)。由此可见,在几何图形有对称中心的配合物的取代反应中,反位效应是一种较为普遍的现象。配体的反位效应强度与中心原子的性质及其价态、内界和外界配体的种类、溶剂和反应条件等密切相关。Pt(Ⅱ)配合物的配体的反位效应强度序列如下:>。Pt(Ⅳ)配合物反位效应的序列与以上序列不同。
  
  理论  ①极化理论:用极化概念来解释反位效应。图1a表示X(卤素离子)与中心Pt(Ⅱ)互相极化生成诱导偶极,但四个X是对称的,故中心原子的诱导偶极为零。若引入强的负配体Y,Y的极化率大于X,则中心原子偶极矩不能抵消,使反位配体X和中心原子间的键减弱,加有箭头的卤素离子X就不稳定(图1b)。
  
  
  ②π键理论:反位效应还可用π键(见共价键)概念来解释。例如在以下反应式中(A为负离子):
  
  
  若配体L不与Pt(Ⅱ)形成π配键,则取代基Y不易取代L反位的X(图2a);若 L的配位原子的Pz空轨接受Pt(Ⅱ)的dxz电子而形成π配键,如CN-、CO中的碳原子,则dxz的电子云远离X而向L伸展,则亲核配体Y容易取代X(图2b )。在上述反应中,π配键的形成有利于一个中间活性配合物的形成,这个中间配合物是一个扭曲的三角双锥体,例如反-[PtA2LX]→反-[PtA2LY]反应的中间态活性配合物(图3)。L匉Pt表示形成的π配键,PtLXY同在xz平面上。但中心金属离子要求 d电子处于配体最小电子密度的区域中,即在Pt-X及Pt-Y方向减少电子密度,使其原来反-[PtA2LX]活性增加,形成反-[PtA2LY]。  反位效应理论尚有动力静电论、离解论及分子轨道论等,但都不如极化理论直观,也不如π 键理论有说服力。
  
  应用  反位效应原理可作为合成金属配合物的指导原则。Α.Д.格尔曼用该原理合成了的三种几何异构体。И.И.切尼亚耶夫用该原理合成了五种[Pt(NH3)2Cl2(NO2)2]异构体。H.C.库尔纳科夫将此原理用于鉴别[PtA2X2]型配合物的顺反异构体。
  
  

参考书目
   J.E.Huheey, Inorganic Chemistry, Principles of Structure and Reactivity, 3rd ed., Harper & International Science, Cambridge, 1983.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条