说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Szāsz-Mirakjan-Baskakov算子
1)  Szasz-Mirakjan-Baskakovoperator
Szāsz-Mirakjan-Baskakov算子
2)  Szasz-Mirakjan operator
Szasz-Mirakjan算子
1.
After studying different forms of extending Szasz-Mirakjan operator at the interval [0,+∞) or (-∞,+∞),the author advances [AKB-] u,p (f,x) as a new form of extending Szasz-Mirakjan operator at the interval (-∞,+∞).
研究 Szasz- Mirakjan算子在 [0 ,+∞ )或 (-∞ ,+∞ )区间上的不同推广形式后 ,提出 Szasz-Mirakjan算子在 (-∞ ,+∞ )区间上的一种新的推广形式 Bu,p(f,x) 。
2.
In this paper,the method of parabola of Bajsanski-Bojanic and the method of probability are used to study modified Szasz-Mirakjan operator L,.
利用Bajsanski-Bojanic的抛物线技巧和概率论中的广义中心极限定理,建立Szasz-Mirakjan算子L_N的局部饱和定理。
3)  Szász-Mirakjan operators
Szász-Mirakjan算子
1.
Derivatives of Szász-Mirakjan operators and smoothness;
Szász-Mirakjan算子导数与光滑性
4)  Szasz-Mirakjan Operators
Szsz-Mirakjan算子
5)  baskakov operators
Baskakov算子
1.
Using the moduli of smoothness w (?)λ 2 (f, t)w, direct and inverse approximation theorems with Jacobi weight of Baskakov operators is established; And the relation between derivatives of the operators and the smoothness of functions to be approximated is obtained.
本文利用加权光滑模ω_~2λ(f,t)ω给出了Baskakov算子加Jacobi权逼近的正逆定理;另外,研究了加权下Baskakov算子导数与所逼近函数光滑性之间的关系。
2.
In this paper we give the equivalence theorem on simultaneous approximation for combinations of Baskakov operators.
本文建立了Baskakov算子线性组合同时逼近的等价定
3.
By means of DitzianTotik moduli of rorder, the local and global characterization theorems for the derivatives of the Baskakov operators are investigated.
研究Baskakov算子导数的点态和整体定理,用Ditzian Totik光滑模刻画该算子导数的点态和整体定理。
6)  Baskakov-Durrmeyer operator
Baskakov-Durrmeyer算子
1.
Simultaneous approximation by Baskakov-Durrmeyer operator;
Baskakov-Durrmeyer算子同时逼近
2.
In this paper, by using the method of Bojanic,we gave an estimate on the rate of convergence of the Baskakov-Durrmeyer operator for the function of bounded variation on [0,∞) and proved that the estimate is essentially the best possible.
利用Bojanic方法来估计Baskakov-Durrmeyer算子对在[0,∞)有界变差函数的收敛速度,并且收敛速率是不可改进的。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8

性质:暂无

制备方法:暂无

用途:用于轻、中度原发性高血压。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条