说明：双击或选中下面任意单词，将显示该词的音标、读音、翻译等；选中中文或多个词，将显示翻译。 您的位置：首页 -> 词典 -> 无穷远单应性矩阵 1)  infinite homography matrix 无穷远单应性矩阵 1. By deriving the formula to determine the infinite homography matrix from a pair of fundamental matrixes, a new linear restoration algorithm of infinite homography matrix from a pair of feature point sets extracted from three-views under a pair of linearly independent motions is developed. 通过推导基本矩阵对唯一确定无穷远单应性矩阵的计算公式,给出从一对线性无关运动下的三幅视图特征点集线性复原无穷远单应性矩阵的新算法,它不但用算法证明复原无穷远单应性矩阵的充要条件,并且在计算速度、复原精度和抗噪能力上与吴 胡算法相比都有较显著的提高。 2)  Homography matrix of the plane at infinity 无穷远平面单应性矩阵 3)  infinite homography 无穷远平面的单应矩阵 1. The homography induced by the plane at infinity between two images, namely the infinite homography, plays a very important role in 3D computer vision since many vision problems could be substantially simplified by knowing it. 在三维计算机视觉中,无穷远平面的单应矩阵扮演了极其重要的角色,可使众多视觉问题的求解得到简化。 4)  the infinite homography 无穷远平面单应矩阵 5)  homography of the plane at infinity 无穷远平面的单应性矩阵 1. In this paper, a new constraint on the homography of the plane at infinity is introduced and a new linear camera calibration technique is proposed based on it. 引入了一种新的对无穷远平面的单应性矩阵 (The infinite homography)的约束方程并据此提出了一种新的摄象机线性自标定算法 。 6)  infinite matrix 无穷矩阵 1. The boundedness of the set of infinite matrix transformations from convergence-free space to sequence spaces is studied,and a general form of it is deducted. 研究了从收敛自由空间到序列空间l1的无穷矩阵变换的有界集的特征,得到了从一般的收敛自由空间到序列空间l1的无穷矩阵变换的一般形式。 2. Let λ and μ be sequence space and have both the signed-weak gliding hump property,(λ,μ) be the algebra of the infinite matrix operators which transform λ to μ. λ、μ是具有符号弱滑脊性的序列空间,(λ,μ)是λ到μ的无穷矩阵代数。 3. This paper introduces the research development of the important effect algebra in quantum mechanics,and points out that it is of great significance to the establishment of mathematical foundation of quantum mechanics by making use of infinite matrix theory to study its convergent theory and invariants. 指出利用无穷矩阵理论研究其上的收敛理论和不变量,对建立量子力学的数学基础有重要意义。 补充资料：应远 1.谓应验之期遥远。 说明：补充资料仅用于学习参考，请勿用于其它任何用途。 参考词条 ©2011 dictall.com